当前位置:首页 > 文章列表 > 文章 > python教程 > 使用 Python 和 NLTK 进行标记化和 WordNet 基础知识简介

使用 Python 和 NLTK 进行标记化和 WordNet 基础知识简介

来源:dev.to 2024-08-01 18:21:45 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《使用 Python 和 NLTK 进行标记化和 WordNet 基础知识简介》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!

使用 Python 和 NLTK 进行标记化和 WordNet 基础知识简介

自然语言处理(nlp)是一个令人着迷的领域,它结合了语言学和计算来理解、解释和操纵人类语言。最强大的工具之一是 python 中的自然语言工具包 (nltk)。在本文中,我们将探讨标记化的概念以及 wordnet(广泛用于 nlp 的英语词汇库)的使用。

什么是代币化?

标记化是将文本划分为更小的单元(称为标记)的过程。这些标记可以是单词、短语,甚至单个字符。标记化是文本处理中的关键步骤,因为它允许算法更有效地理解和分析文本。

例如,考虑短语“hello, world!”。对该短语进行标记可以产生三个标记:[“hello”、“、”“world”、“!”]。这种划分允许单独分析文本的每个部分,从而促进情感分析、机器翻译和命名实体识别等任务。

在 nltk 中,标记化可以通过多种方式完成。让我们看一些实际的例子。

对句子中的文本进行标记

将文本分成句子是许多 nlp 任务的第一步。 nltk 通过 sent_tokenize 函数使这一切变得简单。

import nltk
from nltk.tokenize import sent_tokenize

texto = "olá mundo! bem-vindo ao tutorial de nltk. vamos aprender a tokenizar textos."
sentencas = sent_tokenize(texto, language='portuguese')
print(sentencas)

结果将是:

['olá mundo!', 'bem-vindo ao tutorial de nltk.', 'vamos aprender a tokenizar textos.']

这里,文本被分为三句话。这对于更详细的分析非常有用,其中每个句子都可以单独处理。

将句子标记为单词

将文本分割成句子后,下一步通常是将这些句子分割成单词。 nltk 的 word_tokenize 函数就是用于此目的。

from nltk.tokenize import word_tokenize

frase = "olá mundo!"
palavras = word_tokenize(frase, language='portuguese')
print(palavras)

结果将是:

['olá', 'mundo', '!']

现在我们将每个单词和标点符号作为单独的标记。这对于词频分析等任务至关重要,我们需要计算每个单词在文本中出现的次数。

使用正则表达式进行标记化

在某些情况下,您可能需要更加个性化的标记化。正则表达式(regex)是一个强大的工具。 nltk 提供了 regexptokenizer 类来创建自定义标记器。

from nltk.tokenize import regexptokenizer

tokenizer = regexptokenizer(r'\w+')
tokens = tokenizer.tokenize("vamos aprender nltk.")
print(tokens)

结果将是:

['vamos', 'aprender', 'nltk']

在这里,我们使用正则表达式,仅选择由字母数字字符组成的单词,忽略标点符号。

wordnet 简介

wordnet 是一个词汇数据库,它将单词分组为同义词集(称为同义词集),提供简短、通用的定义,并记录这些单词之间的各种语义关系。在 nltk 中,wordnet 用于查找同义词、反义词、下位词和上位词以及其他关系。

要使用wordnet,我们需要从nltk导入wordnet模块。

from nltk.corpus import wordnet

搜索同义词集

同义词集或同义词集是一组具有相同含义的单词。要搜索单词的同义词集,我们使用 synsets 函数。

sinonimos = wordnet.synsets("dog")
print(sinonimos)

结果将是代表单词“dog”的不同含义的同义词集列表。

[synset('dog.n.01'), synset('frump.n.01'), synset('dog.n.03'), synset('cad.n.01'), synset('frank.n.02'), synset('pawl.n.01'), synset('andiron.n.01')]

每个同义词集都由一个名称来标识,该名称包括单词、词性(n 表示名词,v 表示动词等)以及区分不同含义的数字。

定义和示例

我们可以获得特定同义词集的定义和使用示例。

sinonimo = wordnet.synset('dog.n.01')
print(sinonimo.definition())
print(sinonimo.examples())

结果将是:

a domesticated carnivorous mammal (canis familiaris) that typically has a long snout, an acute sense of smell, non-retractile claws, and a barking, howling, or whining voice
['the dog barked all night']

这让我们清楚地理解了“狗”在这种情况下的含义和用法。

搜索同义词和反义词

要查找单词的同义词和反义词,我们可以探索同义词集引理。

sinonimos = []
antonimos = []

for syn in wordnet.synsets("good"):
    for lemma in syn.lemmas():
        sinonimos.append(lemma.name())
        if lemma.antonyms():
            antonimos.append(lemma.antonyms()[0].name())

print(set(sinonimos))
print(set(antonimos))

结果将是单词“good”的同义词和反义词列表。

{'skillful', 'proficient', 'practiced', 'unspoiled', 'goodness', 'good', 'dependable', 'sound', 'right', 'safe', 'respectable', 'effective', 'trade_good', 'adept', 'good', 'full', 'commodity', 'estimable', 'honorable', 'undecomposed', 'serious', 'secure', 'dear', 'ripe'}
{'evilness', 'evil', 'ill'}

计算语义相似度

wordnet 还允许您计算单词之间的语义相似度。相似度基于下位词/上位词图中同义词集之间的距离。

from nltk.corpus import wordnet

cachorro = wordnet.synset('dog.n.01')
gato = wordnet.synset('cat.n.01')
similaridade = cachorro.wup_similarity(gato)
print(similaridade)

结果将是0到1之间的相似度值。

0.8571428571428571

这个值表明“狗”和“猫”在语义上非常相似。

过滤停用词

停用词是常见的词,通常不会给文本添加太多含义,例如“and”、“a”、“of”。删除这些单词可以帮助您专注于文本中最重要的部分。 nltk 提供了多种语言的停用词列表。

from nltk.corpus import stopwords

stop_words = set(stopwords.words('portuguese'))
palavras = ["olá", "mundo", "é", "um", "lugar", "bonito"]
palavras_filtradas = [w for w in palavras if not w in stop_words]
print(palavras_filtradas)

结果将是:

['olá', 'mundo', 'lugar', 'bonito']

这里,停用词已从原始单词列表中删除。

实际应用

情感分析

情感分析是一种常见的 nlp 应用,其目标是确定文本中表达的观点或情感。标记化和 wordnet 的使用是此过程中的重要步骤。

首先,我们将文本分成单词并删除停用词。然后我们可以使用同义词集来更好地理解单词的上下文和极性。

texto = "eu amo programação em python!"
palavras = word_tokenize(texto, language='portuguese')
palavras_filtradas = [w for w in palavras if not w in stop_words]

polaridade = 0
for palavra in palavras_filtradas:
    synsets = wordnet.synsets(palavra, lang='por')
    if synsets:
        for syn in synsets:
            polaridade += syn.pos_score() - syn.neg_score()

print("polaridade do texto:", polaridade)

在这个简化的示例中,我们将过滤后的单词的同义词集的正分和负分相加,以确定文本的整体极性。

命名实体识别

另一个应用程序是命名实体识别(ner),它可以对文本中的人名、组织、位置等进行识别和分类。

import nltk
nltk.download('maxent_ne_chunker')
nltk.download('words')

frase = "Barack Obama foi o 44º presidente dos Estados Unidos."
palavras = word_tokenize(frase, language='portuguese')
tags = nltk.pos_tag(palavras)
entidades = nltk.ne_chunk(tags)
print(entidades)

结果将是一棵树,将“barack obama”识别为一个人,将“美国”识别为一个位置。

结论

在本文中,我们将探讨标记化的基础知识以及在 python 中使用 wordnet 和 nltk 库。我们看到了如何将文本划分为句子和单词,如何搜索同义词和反义词,计算语义相似度,以及情感分析和命名实体识别等实际应用。 nltk 对于任何对自然语言处理感兴趣的人来说都是一个强大的工具,提供了广泛的功能来有效地转换和分析文本。

理论要掌握,实操不能落!以上关于《使用 Python 和 NLTK 进行标记化和 WordNet 基础知识简介》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
如何从 HTML 字符串创建 DOM 元素(多种方法)如何从 HTML 字符串创建 DOM 元素(多种方法)
上一篇
如何从 HTML 字符串创建 DOM 元素(多种方法)
java框架与物联网设备通信优化策略
下一篇
java框架与物联网设备通信优化策略
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3212次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3425次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3455次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4564次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3832次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码