使用 Python 和 NLTK 进行标记化和 WordNet 基础知识简介
今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《使用 Python 和 NLTK 进行标记化和 WordNet 基础知识简介》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!
自然语言处理(nlp)是一个令人着迷的领域,它结合了语言学和计算来理解、解释和操纵人类语言。最强大的工具之一是 python 中的自然语言工具包 (nltk)。在本文中,我们将探讨标记化的概念以及 wordnet(广泛用于 nlp 的英语词汇库)的使用。
什么是代币化?
标记化是将文本划分为更小的单元(称为标记)的过程。这些标记可以是单词、短语,甚至单个字符。标记化是文本处理中的关键步骤,因为它允许算法更有效地理解和分析文本。
例如,考虑短语“hello, world!”。对该短语进行标记可以产生三个标记:[“hello”、“、”“world”、“!”]。这种划分允许单独分析文本的每个部分,从而促进情感分析、机器翻译和命名实体识别等任务。
在 nltk 中,标记化可以通过多种方式完成。让我们看一些实际的例子。
对句子中的文本进行标记
将文本分成句子是许多 nlp 任务的第一步。 nltk 通过 sent_tokenize 函数使这一切变得简单。
import nltk from nltk.tokenize import sent_tokenize texto = "olá mundo! bem-vindo ao tutorial de nltk. vamos aprender a tokenizar textos." sentencas = sent_tokenize(texto, language='portuguese') print(sentencas)
结果将是:
['olá mundo!', 'bem-vindo ao tutorial de nltk.', 'vamos aprender a tokenizar textos.']
这里,文本被分为三句话。这对于更详细的分析非常有用,其中每个句子都可以单独处理。
将句子标记为单词
将文本分割成句子后,下一步通常是将这些句子分割成单词。 nltk 的 word_tokenize 函数就是用于此目的。
from nltk.tokenize import word_tokenize frase = "olá mundo!" palavras = word_tokenize(frase, language='portuguese') print(palavras)
结果将是:
['olá', 'mundo', '!']
现在我们将每个单词和标点符号作为单独的标记。这对于词频分析等任务至关重要,我们需要计算每个单词在文本中出现的次数。
使用正则表达式进行标记化
在某些情况下,您可能需要更加个性化的标记化。正则表达式(regex)是一个强大的工具。 nltk 提供了 regexptokenizer 类来创建自定义标记器。
from nltk.tokenize import regexptokenizer tokenizer = regexptokenizer(r'\w+') tokens = tokenizer.tokenize("vamos aprender nltk.") print(tokens)
结果将是:
['vamos', 'aprender', 'nltk']
在这里,我们使用正则表达式,仅选择由字母数字字符组成的单词,忽略标点符号。
wordnet 简介
wordnet 是一个词汇数据库,它将单词分组为同义词集(称为同义词集),提供简短、通用的定义,并记录这些单词之间的各种语义关系。在 nltk 中,wordnet 用于查找同义词、反义词、下位词和上位词以及其他关系。
要使用wordnet,我们需要从nltk导入wordnet模块。
from nltk.corpus import wordnet
搜索同义词集
同义词集或同义词集是一组具有相同含义的单词。要搜索单词的同义词集,我们使用 synsets 函数。
sinonimos = wordnet.synsets("dog") print(sinonimos)
结果将是代表单词“dog”的不同含义的同义词集列表。
[synset('dog.n.01'), synset('frump.n.01'), synset('dog.n.03'), synset('cad.n.01'), synset('frank.n.02'), synset('pawl.n.01'), synset('andiron.n.01')]
每个同义词集都由一个名称来标识,该名称包括单词、词性(n 表示名词,v 表示动词等)以及区分不同含义的数字。
定义和示例
我们可以获得特定同义词集的定义和使用示例。
sinonimo = wordnet.synset('dog.n.01') print(sinonimo.definition()) print(sinonimo.examples())
结果将是:
a domesticated carnivorous mammal (canis familiaris) that typically has a long snout, an acute sense of smell, non-retractile claws, and a barking, howling, or whining voice ['the dog barked all night']
这让我们清楚地理解了“狗”在这种情况下的含义和用法。
搜索同义词和反义词
要查找单词的同义词和反义词,我们可以探索同义词集引理。
sinonimos = [] antonimos = [] for syn in wordnet.synsets("good"): for lemma in syn.lemmas(): sinonimos.append(lemma.name()) if lemma.antonyms(): antonimos.append(lemma.antonyms()[0].name()) print(set(sinonimos)) print(set(antonimos))
结果将是单词“good”的同义词和反义词列表。
{'skillful', 'proficient', 'practiced', 'unspoiled', 'goodness', 'good', 'dependable', 'sound', 'right', 'safe', 'respectable', 'effective', 'trade_good', 'adept', 'good', 'full', 'commodity', 'estimable', 'honorable', 'undecomposed', 'serious', 'secure', 'dear', 'ripe'} {'evilness', 'evil', 'ill'}
计算语义相似度
wordnet 还允许您计算单词之间的语义相似度。相似度基于下位词/上位词图中同义词集之间的距离。
from nltk.corpus import wordnet cachorro = wordnet.synset('dog.n.01') gato = wordnet.synset('cat.n.01') similaridade = cachorro.wup_similarity(gato) print(similaridade)
结果将是0到1之间的相似度值。
0.8571428571428571
这个值表明“狗”和“猫”在语义上非常相似。
过滤停用词
停用词是常见的词,通常不会给文本添加太多含义,例如“and”、“a”、“of”。删除这些单词可以帮助您专注于文本中最重要的部分。 nltk 提供了多种语言的停用词列表。
from nltk.corpus import stopwords stop_words = set(stopwords.words('portuguese')) palavras = ["olá", "mundo", "é", "um", "lugar", "bonito"] palavras_filtradas = [w for w in palavras if not w in stop_words] print(palavras_filtradas)
结果将是:
['olá', 'mundo', 'lugar', 'bonito']
这里,停用词已从原始单词列表中删除。
实际应用
情感分析
情感分析是一种常见的 nlp 应用,其目标是确定文本中表达的观点或情感。标记化和 wordnet 的使用是此过程中的重要步骤。
首先,我们将文本分成单词并删除停用词。然后我们可以使用同义词集来更好地理解单词的上下文和极性。
texto = "eu amo programação em python!" palavras = word_tokenize(texto, language='portuguese') palavras_filtradas = [w for w in palavras if not w in stop_words] polaridade = 0 for palavra in palavras_filtradas: synsets = wordnet.synsets(palavra, lang='por') if synsets: for syn in synsets: polaridade += syn.pos_score() - syn.neg_score() print("polaridade do texto:", polaridade)
在这个简化的示例中,我们将过滤后的单词的同义词集的正分和负分相加,以确定文本的整体极性。
命名实体识别
另一个应用程序是命名实体识别(ner),它可以对文本中的人名、组织、位置等进行识别和分类。
import nltk nltk.download('maxent_ne_chunker') nltk.download('words') frase = "Barack Obama foi o 44º presidente dos Estados Unidos." palavras = word_tokenize(frase, language='portuguese') tags = nltk.pos_tag(palavras) entidades = nltk.ne_chunk(tags) print(entidades)
结果将是一棵树,将“barack obama”识别为一个人,将“美国”识别为一个位置。
结论
在本文中,我们将探讨标记化的基础知识以及在 python 中使用 wordnet 和 nltk 库。我们看到了如何将文本划分为句子和单词,如何搜索同义词和反义词,计算语义相似度,以及情感分析和命名实体识别等实际应用。 nltk 对于任何对自然语言处理感兴趣的人来说都是一个强大的工具,提供了广泛的功能来有效地转换和分析文本。
理论要掌握,实操不能落!以上关于《使用 Python 和 NLTK 进行标记化和 WordNet 基础知识简介》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

- 上一篇
- 如何从 HTML 字符串创建 DOM 元素(多种方法)

- 下一篇
- java框架与物联网设备通信优化策略
-
- 文章 · python教程 | 11分钟前 |
- Python初学者必备IDE推荐与使用攻略
- 231浏览 收藏
-
- 文章 · python教程 | 16分钟前 | Python 数据采样 random.sample pandas.groupby 分层抽样
- Python数据采样方法与技巧详解
- 138浏览 收藏
-
- 文章 · python教程 | 41分钟前 | Pipe multiprocessing conn.send() conn.recv() conn.close()
- Python中如何用Pipe实现进程间通信?
- 114浏览 收藏
-
- 文章 · python教程 | 56分钟前 |
- TimeMachine备份与Python虚拟环境隔离实战
- 207浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Python读取文本文件的终极攻略
- 233浏览 收藏
-
- 文章 · python教程 | 2小时前 | orm 性能问题 多表关联查询 学习曲线 sqlalchemy
- Python多表关联查询的技巧与实现
- 353浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Python中如何用Manager管理共享状态?
- 430浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Ubuntu22.04源码编译Python3.12,依赖详解
- 145浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 18次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 29次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 27次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 30次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 32次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览