当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂

厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂

来源:机器之心 2024-07-31 16:51:43 0浏览 收藏

一分耕耘,一分收获!既然都打开这篇《厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂》,就坚持看下去,学下去吧!本文主要会给大家讲到等等知识点,如果大家对本文有好的建议或者看到有不足之处,非常欢迎大家积极提出!在后续文章我会继续更新科技周边相关的内容,希望对大家都有所帮助!

厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂

编辑 | KX
传统的材料发现依赖反复试验或偶然发现,效率低下且成本高昂。
AI 在发现新型催化剂方面潜力巨大。然而,受到算法的选择,以及数据质量和数量的影响。
在此,来自厦门大学、深圳大学、武汉大学、南京航空航天大学和英国利物浦大学的研究团队开发了一种迁移学习范式,结合了预训练模型、集成学习和主动学习,能够预测未被发现的 钙钛矿氧化物,并增强该反应的通用性。
通过筛选 16,050 种成分,鉴定和合成了 36 种新的钙钛矿氧化物,其中包括 13 种纯钙钛矿结构。
Pr0.1Sr0.9Co0.5Fe0.5O3(PSCF)和 Pr0.1Sr0.9Co0.5Fe0.3Mn0.2O3(PSCFM)在 10 mA cm^-2 时分别表现出 327 mV 和 315 mV 的低过电位。电化学测量表明,两种材料中 O-O 耦合的吸附质演化机制(AEM)和晶格氧机制(LOM)共存。
该研究为加速发现和开发用于该反应的高性能钙钛矿氧化物电催化剂铺平了道路。
相关研究以「Transfer learning guided discovery of efficient perovskite oxide for alkaline water oxidation」为题,于 7 月 26 日发布在《Nature Communications》上。

厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂

当前材料发现方法的局限性

钙钛矿氧化物材料在绿色电合成增值化学品中发挥着关键作用,这是实现碳中和的关键一步。

一个值得关注的应用是它们在析氧反应 (OER) 中的应用,该反应可以与各种阴极反应相结合。然而,OER 在动力学上仍然很缓慢,涉及 4 步质子-电子耦合转移过程。因此,开发高效且经济的电催化剂至关重要。

先前的研究表明,将各种阳离子(Ce、Pr、Cr、Sr、V、W、Co、Fe、Mn、Nb、Mg 等)掺入钙钛矿氧化物的 A 位或 B 位,可以有效调节局部配位环境和电子结构,从而提高电催化性能。然而,由于材料发现的反复试验方法效率低下,其具体化学成分仍未得到探索。

高通量密度泛函理论 (DFT) 计算通常需要预先了解特定的算法或方法,从而阻碍了不同系统之间的数据统一,限制了其通用性。

AI 在发现新型电催化剂方面有巨大潜力。然而,基于特征选择和简化的 ML 算法通常会消除不太重要的描述符,不可避免地导致信息丢失和预测准确性降低。此外,在分析同一数据集的相对重要性时,不同的算法经常会产生不一致的结果。

除了算法的选择之外,数据的质量和数量在确定基于 ML 的预测的准确性方面也起着至关重要的作用。从 DFT 派生的传统模拟数据库通常仅限于单个或几个类似的系统,从而限制了所提取知识的适用性和普遍性。此外,由于缺乏普遍接受的实验方法报告标准,因此实验数据相对稀缺且难以整合。

迁移学习范式

为了应对这一挑战,厦大团队提出了一种以钙钛矿氧化物电催化剂的阳离子信息为中心的强大迁移学习范式。该方法利用预训练的模型有效地将 OER 数据与来自不同研究领域的大量数据集相结合,涵盖了更广泛的钙钛矿成分。

采用集成方法来组合通过结合领域知识和无监督学习技术确定的不同子簇衍生的模型。该策略促进了不同材料系统之间的知识转移,从而显著提高了预测准确性。

所提出的迁移学习范式包括七个步骤:

  1. 数据提取
  2. 阳离子编码
  3. 特征嵌入
  4. 聚类
  5. 局部预测
  6. 全局集成
  7. 主动学习闭环实验验证

由于 OER 钙钛矿氧化物数据有限,研究人员还收集了非 OER 钙钛矿氧化物的数据。这种方法将数据集从 94 个条目扩展到 140 个条目,增加了 48.9%。丰富的数据集涵盖了多种特征,包括材料成分、氧空位浓度和化学价态分布。

厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂

实验验证和主动学习

研究人员对候选材料进行了实验验证。由于预测结构熵较高的钙钛矿氧化物材料的性质本身就很复杂,最初的预测仅限于四元和五元组成。

从超过 500 万个预测点中选择了 30 种化学式进行实验验证。重要的是,预测组成为 PSCF 的材料将是一种高性能材料,其最低过电位为 340.81 mV(364.80 ± 18.55 mV)。初步线性扫描伏安法 (LSV) 评估证实了 PSCF 的过电位为 327 mV。

厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂

图示:迁移学习模型的评估和预测。(来源:论文)

1. 从第二轮预测:
主动学习方法的结合将预测能力扩展到更复杂的六元材料系统,PSCF 中 Mn 部分取代 Fe 的 PSCFM,实现了 302.92 mV(322.75 mV ± 14.09 mV)的最小预测过电位。

2. 随后,所有这些选定的材料都经过制造、XRD 筛选并通过 LSV 测量进行评估:
与预测一致,PSCFM 在 10 mA cm^−2 时显示出 315 mV 的降低过电位,验证了模型的可靠性。

3. 主动学习策略的进一步验证:
涉及将精确编码的 PSCFM 价态分布纳入第三个预测周期的训练集。

4. 研究表明:
尽管六元系统本身就很复杂,但应用主动学习策略可以提高预测准确性。

厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂

图示:Mn 掺杂对钙钛矿氧化物 OER 的影响。(来源:论文)

综合表征表明,晶格氧在促进 OER 过程中的 O-O 偶联方面起着关键作用。DFT 计算进一步阐明了这种增强 OER 活性的机制基础。Mn 融入 PSCF 可增强 Co 反应位点的稳定性,同时通过晶格氧机制 (LOM) 途径降低 Mn-O-Co 基序上的反应势垒。

该方法证明了迁移学习和主动学习在克服数据限制和准确预测 OER 催化剂方面的有效性。研究建立了强大的 ML 范式,为加速高性能 OER 催化剂的开发铺平了道路。

注:封面来自网络

以上就是《厦大团队材料预测迁移学习范式登Nature子刊,发现高性能催化剂》的详细内容,更多关于理论,迁移学习,​大模型,集成学习,主动学习的资料请关注golang学习网公众号!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
2024年巴黎奥运会开幕式上 三星进一步拉近粉丝与运动员的距离2024年巴黎奥运会开幕式上 三星进一步拉近粉丝与运动员的距离
上一篇
2024年巴黎奥运会开幕式上 三星进一步拉近粉丝与运动员的距离
golang框架的可测试代码编写的最佳实践
下一篇
golang框架的可测试代码编写的最佳实践
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    23次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    33次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    30次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    33次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码