如何预处理数据集
积累知识,胜过积蓄金银!毕竟在文章开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《如何预处理数据集》,就带大家讲解一下知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

简介
泰坦尼克号数据集是数据科学和机器学习项目中使用的经典数据集。它包含有关泰坦尼克号乘客的信息,目标通常是预测哪些乘客在灾难中幸存。在构建任何预测模型之前,预处理数据以确保数据干净且适合分析至关重要。这篇博文将指导您完成使用 python 预处理泰坦尼克号数据集的基本步骤。
第 1 步:加载数据
任何数据分析项目的第一步都是加载数据集。我们使用 pandas 库读取包含泰坦尼克号数据的 csv 文件。该数据集包括姓名、年龄、性别、机票、票价以及乘客是否幸存(survived)等特征。
import pandas as pd import numpy as np
加载泰坦尼克号数据集
titanic = pd.read_csv('titanic.csv')
titanic.head()
了解数据
数据集包含以下与泰坦尼克号乘客相关的变量:
-
生存:表示乘客是否幸存。
- 0 = 否
- 1 = 是
-
pclass:乘客的机票舱位。
- 1 = 一等
- 2 = 二等
- 3 = 三等
性别:乘客的性别。
年龄:乘客的年龄(以岁为单位)。
sibsp:泰坦尼克号上的兄弟姐妹或配偶的数量。
parch:泰坦尼克号上的父母或孩子的数量。
门票:门票号码。
票价:客运票价。
客舱:客舱号码。
-
登船:登船港口。
- c = 瑟堡
- q = 皇后镇
- s = 南安普敦
第 2 步:探索性数据分析 (eda)
探索性数据分析(eda)涉及检查数据集以了解其结构以及不同变量之间的关系。此步骤有助于识别数据中的任何模式、趋势或异常。
数据集概述
我们首先显示数据集的前几行并获取统计信息摘要。这让我们了解数据类型、值的范围以及是否存在任何缺失值。
# display the first few rows print(titanic.head()) # summary statistics print(titanic.describe(include='all'))
第三步:数据清理
数据清理是处理缺失值、更正数据类型和消除任何不一致的过程。在泰坦尼克号数据集中,age、cabin 和 embarked 等特征存在缺失值。
处理缺失值
为了处理缺失值,我们可以用适当的值填充它们或删除缺失数据的行/列。例如,我们可以用年龄中位数填充缺失的 age 值,并删除缺失 embarked 值的行。
# fill missing age values with the mode titanic['age'].fillna(titanic['age'].mode(), inplace=true) # drop rows with missing 'embarked' values titanic.dropna(subset=['embarked'], inplace=true) # check remaining missing values print(titanic.isnull().sum())
第四步:特征工程
特征工程涉及改造现有特征以提高模型性能。此步骤可以包括对分类变量进行编码以缩放数值特征。
编码分类变量
机器学习算法需要数值输入,因此我们需要将分类特征转换为数值特征。我们可以对 sex 和 embarked 等功能使用 one-hot 编码。
# Convert categorical features to numerical from sklearn import preprocessing le = preprocessing.LabelEncoder() #fit the required column to be transformed le.fit(df['Sex']) df['Sex'] = le.transform(df['Sex'])
结论
预处理是任何数据科学项目中的关键步骤。在这篇博文中,我们介绍了加载数据、执行探索性数据分析、清理数据和特征工程的基本步骤。这些步骤有助于确保我们的数据已准备好进行分析或模型构建。下一步是使用这些预处理的数据来构建预测模型并评估其性能。如需进一步了解,请查看我的 colab 笔记本
通过遵循这些步骤,初学者可以在数据预处理方面打下坚实的基础,为更高级的数据分析和机器学习任务奠定基础。快乐编码!
文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《如何预处理数据集》文章吧,也可关注golang学习网公众号了解相关技术文章。
-
- 文章 · python教程 | 31分钟前 |
- Python批量合并Excel表格方法
- 170浏览 收藏
-
- 文章 · python教程 | 37分钟前 |
- Python全局二值化方法全解析
- 438浏览 收藏
-
- 文章 · python教程 | 50分钟前 |
- Python错误捕获技巧分享
- 253浏览 收藏
-
- 文章 · python教程 | 50分钟前 |
- Python多线程join使用技巧详解
- 380浏览 收藏
-
- 文章 · python教程 | 56分钟前 |
- 电话号码字母组合:键重复与回溯算法解析
- 471浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pythonxlutils库用途及使用方法
- 265浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- 原地去重算法原理与实现解析
- 348浏览 收藏
-
- 文章 · python教程 | 1小时前 | Scrapy 请求参数 response.follow scrapy.Request FormRequest
- Scrapy.Request方法详解与使用技巧
- 497浏览 收藏
-
- 文章 · python教程 | 1小时前 | Python 命令行 环境变量 python--version 安装验证
- 确认电脑Python是否安装成功的方法
- 422浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python多进程共享数据技巧
- 328浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Pythonround函数四舍五入详解
- 239浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3210次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3424次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3453次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4561次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3831次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

Go 的单元测试
