当前位置:首页 > 文章列表 > 文章 > java教程 > AVLTree 类

AVLTree 类

来源:dev.to 2024-07-25 08:46:01 0浏览 收藏

亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《AVLTree 类》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下,希望所有认真读完的童鞋们,都有实质性的提高。

AVLTree 类

avltree类扩展了bst类以重写insertdelete方法以在必要时重新平衡树。下面的代码给出了 avltree 类的完整源代码。

package demo;

public class AVLTree<E extends Comparable<E>> extends BST<E> {
    /** Create an empty AVL tree */
    public AVLTree() {}

    /** Create an AVL tree from an array of objects */
    public AVLTree(E[] objects) {
        super(objects);
    }

    @Override /** Override createNewNode to create an AVLTreeNode */
    protected AVLTreeNode<E> createNewNode(E e) {
        return new AVLTreeNode<E>(e);
    }

    @Override /** Insert an element and rebalance if necessary */
    public boolean insert(E e) {
        boolean successful = super.insert(e);
        if (!successful)
            return false; // e is already in the tree
        else {
            balancePath(e); // Balance from e to the root if necessary
        }

        return true; // e is inserted
    }

    /** Update the height of a specified node */
    private void updateHeight(AVLTreeNode<E> node) {
        if (node.left == null && node.right == null) // node is a leaf
            node.height = 0;
        else if (node.left == null) // node has no left subtree
            node.height = 1 + ((AVLTreeNode<E>)(node.right)).height;
        else if (node.right == null) // node has no right subtree
            node.height = 1 + ((AVLTreeNode<E>)(node.left)).height;
        else
            node.height = 1 + Math.max(((AVLTreeNode<E>)(node.right)).height, ((AVLTreeNode<E>)(node.left)).height);
    }

    /** Balance the nodes in the path from the specified
    * node to the root if necessary
    */
    private void balancePath(E e) {
        java.util.ArrayList<TreeNode<E>> path = path(e);
        for (int i = path.size() - 1; i >= 0; i--) {
            AVLTreeNode<E> A = (AVLTreeNode<E>)(path.get(i));
            updateHeight(A);
            AVLTreeNode<E> parentOfA = (A == root) ? null : (AVLTreeNode<E>)(path.get(i - 1));

            switch (balanceFactor(A)) {
            case -2:
                if (balanceFactor((AVLTreeNode<E>)A.left) <= 0) {
                    balanceLL(A, parentOfA); // Perform LL rotation
                }
                else {
                    balanceLR(A, parentOfA); // Perform LR rotation
                }
                break;
                case +2:
                    if (balanceFactor((AVLTreeNode<E>)A.right) >= 0) {
                        balanceRR(A, parentOfA); // Perform RR rotation
                    }
                else {
                    balanceRL(A, parentOfA); // Perform RL rotation
                }
            }
        }
    }

    /** Return the balance factor of the node */
    private int balanceFactor(AVLTreeNode<E> node) {
        if (node.right == null) // node has no right subtree
            return -node.height;
        else if (node.left == null) // node has no left subtree
            return +node.height;
        else
            return ((AVLTreeNode<E>)node.right).height - ((AVLTreeNode<E>)node.left).height;
    }

    /** Balance LL (see Figure 26.2) */
    private void balanceLL(TreeNode<E> A, TreeNode<E> parentOfA) {
        TreeNode<E> B = A.left; // A is left-heavy and B is left-heavy
        if (A == root) {
            root = B;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = B;
            }
            else {
                parentOfA.right = B;
            }
        }

        A.left = B.right; // Make T2 the left subtree of A
        B.right = A; // Make A the left child of B
        updateHeight((AVLTreeNode<E>)A);
        updateHeight((AVLTreeNode<E>)B);
    }

    /** Balance LR (see Figure 26.4) */
    private void balanceLR(TreeNode<E> A, TreeNode<E> parentOfA) {
        TreeNode<E> B = A.left; // A is left-heavy
        TreeNode<E> C = B.right; // B is right-heavy

        if (A == root) {
            root = C;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = C;
            }
            else {
                parentOfA.right = C;
            }
        }

        A.left = C.right; // Make T3 the left subtree of A
        B.right = C.left; // Make T2 the right subtree of B
        C.left = B;
        C.right = A;

        // Adjust heights
        updateHeight((AVLTreeNode<E>)A);
        updateHeight((AVLTreeNode<E>)B);
        updateHeight((AVLTreeNode<E>)C);
    }

    /** Balance RR (see Figure 26.3) */
    private void balanceRR(TreeNode<E> A, TreeNode<E> parentOfA) {
        TreeNode<E> B = A.right; // A is right-heavy and B is right-heavy

        if (A == root) {
            root = B;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = B;
            }
            else {
                parentOfA.right = B;
            }
        }

        A.right = B.left; // Make T2 the right subtree of A
        B.left = A;
        updateHeight((AVLTreeNode<E>)A);
        updateHeight((AVLTreeNode<E>)B);
    }

    /** Balance RL (see Figure 26.5) */
    private void balanceRL(TreeNode<E> A, TreeNode<E> parentOfA) {
        TreeNode<E> B = A.right; // A is right-heavy
        TreeNode<E> C = B.left; // B is left-heavy

        if (A == root) {
            root = C;
        }
        else {
            if (parentOfA.left == A) {
                parentOfA.left = C;
            }
            else {
                parentOfA.right = C;
            }
        }

        A.right = C.left; // Make T2 the right subtree of A
        B.left = C.right; // Make T3 the left subtree of B
        C.left = A;
        C.right = B;

        // Adjust heights
        updateHeight((AVLTreeNode<E>)A);
        updateHeight((AVLTreeNode<E>)B);
        updateHeight((AVLTreeNode<E>)C);
    }

    @Override /** Delete an element from the AVL tree.
    * Return true if the element is deleted successfully
    * Return false if the element is not in the tree */
    public boolean delete(E element) {
        if (root == null)
            return false; // Element is not in the tree

        // Locate the node to be deleted and also locate its parent node
        TreeNode<E> parent = null;
        TreeNode<E> current = root;
        while (current != null) {
            if (element.compareTo(current.element) < 0) {
                parent = current;
                current = current.left;
            }
            else if (element.compareTo(current.element) > 0) {
                parent = current;
                current = current.right;
            }
            else
                break; // Element is in the tree pointed by current
        }

        if (current == null)
            return false; // Element is not in the tree

        // Case 1: current has no left children (See Figure 25.10)
        if (current.left == null) {
            // Connect the parent with the right child of the current node
            if (parent == null) {
                root = current.right;
            }
            else {
                if (element.compareTo(parent.element) < 0)
                    parent.left = current.right;
                else
                    parent.right = current.right;
                // Balance the tree if necessary
                balancePath(parent.element);
            }
        }
        else {
            // Case 2: The current node has a left child
            // Locate the rightmost node in the left subtree of
            // the current node and also its parent
            TreeNode<E> parentOfRightMost = current;
            TreeNode<E> rightMost = current.left;

            while (rightMost.right != null) {
                parentOfRightMost = rightMost;
                rightMost = rightMost.right; // Keep going to the right
            }

            // Replace the element in current by the element in rightMost
            current.element = rightMost.element;

            // Eliminate rightmost node
            if (parentOfRightMost.right == rightMost)
                parentOfRightMost.right = rightMost.left;
            else
                // Special case: parentOfRightMost is current
                parentOfRightMost.left = rightMost.left;
            // Balance the tree if necessary
            balancePath(parentOfRightMost.element);
        }

        size--;
        return true; // Element inserted
    }

    /** AVLTreeNode is TreeNode plus height */
    protected static class AVLTreeNode<E extends Comparable<E>> extends BST.TreeNode<E> {
        protected int height = 0; // New data field

        public AVLTreeNode(E e) {
            super(e);
        }
    }
}

avltree 类扩展了bst。与 bst 类一样,avltree 类有一个无参构造函数,用于构造一个空的 avltree(第 5 行),以及一个从元素数组创建初始 avltree 的构造函数(第 8-10 行) .

bst类中定义的createnewnode()方法创建一个treenode。重写此方法以返回 avltreenode(第 13-15 行)。

avltree中的insert方法在第18-27行被覆盖。该方法首先调用bst中的insert方法,然后调用balancepath(e)(第23行)来确保树是平衡的。

balancepath方法首先获取从包含元素e的节点到根节点的路径上的节点(第45行)。对于路径中的每个节点,更新其高度(第 48 行),检查其平衡系数(第 51 行),并在必要时执行适当的旋转(第 51-67 行)。

第 82-178 行定义了四种执行旋转的方法。每个方法都使用两个

treenode 参数(aparentofa)进行调用,以在节点 a 处执行适当的旋转。帖子中的附图说明了如何执行每次旋转。旋转后,节点abc的高度更新(第98、125、148、175行)。

avltree中的delete方法在第183-248行被重写。该方法与bst类中实现的方法相同,只是在两种情况下需要在删除后重新平衡节点(第218、243行)。

本篇关于《AVLTree 类》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
设计 AVL 树的类设计 AVL 树的类
上一篇
设计 AVL 树的类
AVL树
下一篇
AVL树
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 讯飞AI大学堂免费AI认证证书:大模型工程师认证,提升您的职场竞争力
    免费AI认证证书
    科大讯飞AI大学堂推出免费大模型工程师认证,助力您掌握AI技能,提升职场竞争力。体系化学习,实战项目,权威认证,助您成为企业级大模型应用人才。
    32次使用
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    161次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    220次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    181次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    169次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码