成本减少90%以上,「主动学习+实验工作流程」加速催化剂开发
科技周边不知道大家是否熟悉?今天我将给大家介绍《成本减少90%以上,「主动学习+实验工作流程」加速催化剂开发》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!

编辑 | 绿罗
通过合成气的热催化加氢合成高级醇 (HAS) 仍然是一项有前途的技术。链增长和 CO 插入要求需要多组分材料,其复杂的反应动力学和广泛的化学空间不符合催化剂设计规范。
在此,来自苏黎世联邦理工学院(ETH Zurich)的研究人员提出了一种替代策略,将主动学习整合到实验工作流程中,以 FeCoCuZr 催化剂系列为例。
所提数据辅助框架简化了 86 个实验中广泛成分和反应条件空间的导航,与传统程序相比,环境足迹和成本减少了 90% 以上。它确定了具有优化反应条件的 Fe65Co19Cu5Zr11 催化剂,在稳定运行 150 小时的情况下可实现1.1的更高醇生产率,比通常报告的产量提高了 5 倍。
这种方法超越了现有的 HAS 催化剂设计策略,适用于更广泛的催化转化,并促进了实验室的可持续性。
相关研究以《Active learning streamlines development of high performance catalysts for higher alcohol synthesis》为题,于 7 月 11 日,发布在《Nature Communications》上。
开发用于合成气基高级醇合成 (HAS) 的高效催化剂仍然是一项艰巨的研究挑战,它可在促进循环经济和缓解气候变化问题的同时,减少有价值化学品和燃料添加剂生产的化石燃料。为有价值的化学品和燃料添加剂的生产提供化石燃料。
机器学习 (ML) 与并行实验的交汇点是主动学习,它适用于通过小数据—机器智能—人类决策的闭环框架来加速材料设计和工艺优化。
尽管这种方法在材料科学、药物发现和生物系统工程领域越来越受欢迎,但在催化领域仍未得到充分探索。主动学习辅助方法是否适用于高度复杂的 HAS 催化剂系统尚不清楚。
主动学习加速催化剂开发
在这项研究中,研究人员开创了一种主动学习策略来加速高活性 FeCoCuZr 催化剂的开发。主要特点包括:
(i) Fe65Co19Cu5Zr11 催化剂具有较高的预测能力,其最佳反应条件为稳定的高级醇的时空产率(STYHA)为 1.1 ,持续时间至少为 150 h,是目前报道的合成气直接 HAS 的最高值;
(ii) 通过从大约 50 亿个潜在组合的巨大空间中识别出 86 个实验的最佳系统,大幅减少时间和资源;
(iii) 多目标优化揭示内在性能权衡和推荐的帕累托最优催化剂,以最大限度地降低对 CO2 和 CH4 的选择性,同时仍保持高 STYHA。
这些结果强调了数据驱动方法在持续加快高效多组分催化剂开发和促进催化研究创新方面的潜力。
主动学习框架概述和范围
主动学习方法,将数据驱动算法与实验工作流程相结合,该方法不断从迭代实验循环中现有和新生成的数据中学习,以探索和识别 FeCoCuZr 成分和反应条件,优化感兴趣的催化剂性能指标。数据驱动模型的核心结合了高斯过程 (GP) 和贝叶斯优化 (BO) 算法,以及人类决策,从而完成单目标或多目标任务。
图示:开发 FeCoCuZr 催化剂的主动学习工作流程方案。(来源:论文)
为了展示这种方法对 HAS 的可行性,研究分三个不同阶段系统地进行,逐步增加模型的复杂性。
在第 1 阶段,改变催化剂成分,目标是在固定反应条件下最大化 STYHA。
在第 2 阶段,通过同时探索催化剂成分和反应条件来最大化 STYHA,增加了问题的维度。
随后,在第 3 阶段,通过同时最大化 STYHA 并最小化二氧化碳和甲烷的综合选择性,将该方法扩展到多目标能力。每个阶段进行由六次实验组成的迭代循环,直到达到目标性能指标或达到饱和状态。
主动学习和可持续实验室
虽然 FeCoCuZr 系统可能的化学和参数空间有十亿种组合,但多组分催化剂的实际研究范围从数百到数千个筛选实验。
通过采用主动学习,研究人员将 FeCoCuZr 催化剂的广阔空间映射到 1-3 阶段的累计 104 个实验中,以满足所需的性能目标,证实了越来越多的文献声称主动学习可以加速实验工作。这对催化剂开发计划的环境和经济可持续性产生了深远的影响,而这一影响尚未得到探索。
在此背景下,假设这项研究代表了催化剂开发工作,研究评估了主动学习对实验室的两个可持续性支柱的影响程度。
分析表明,与传统活动相比,碳足迹和成本平均减少了 90% 以上。还观察到,这一结果与全球区域差异的依赖性非常小,例如,影响能源结构或实验室运营支出的构成。
因此,通过减少化学品和能源的消耗,并优化资源利用率,主动学习显著促进了可持续催化实验室的发展。
注:封面来自网络
文中关于理论的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《成本减少90%以上,「主动学习+实验工作流程」加速催化剂开发》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- Java 框架如何支持云原生应用程序对异构云平台的移植性?

- 下一篇
- ACL 2024 | 对25个开闭源模型数学评测,GPT-3.5-Turbo才勉强及格
-
- 科技周边 · 人工智能 | 47分钟前 |
- Suna—全球首发开源通用AIAgent
- 369浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- VoltAgent:开源AIAgent构建编排利器
- 316浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 |
- Rowboat—开源AI工具,快速构建多智能体系统
- 355浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 2次使用
-
- Brev AI
- 探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
- 2次使用
-
- AI音乐实验室
- AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
- 2次使用
-
- PixPro
- SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
- 2次使用
-
- EasyMusic
- EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
- 3次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览