当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100

无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100

来源:机器之心 2024-07-17 16:39:52 0浏览 收藏

哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!

无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100
AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

李堉晖:北京大学智能学院硕士,受张弘扬老师和张超老师指导,研究方向为大模型加速和对齐,正在寻找25届工作机会
魏芳芸:微软亚研院研究员,研究方向为具身智能、图像生成和AI agents

张超:北京大学智能学院研究员,研究方向为计算机视觉和机器学习

张弘扬:滑铁卢大学计算机学院、向量研究院助理教授,研究方向为LLM加速和AI安全

自回归解码已经成为了大语言模型(LLMs)的事实标准,大语言模型每次前向计算需要访问它全部的参数,但只能得到一个token,导致其生成昂贵且缓慢。

今日,一篇题为《EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees》的论文提出了动态草稿树投机采样,依据草稿模型的置信度动态调整草稿树的结构,最高可以将大语言模型的推理速度提高5倍,同时不改变大语言模型的输出分布,确保无损。

无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100

  • 论文链接:https://arxiv.org/pdf/2406.16858
  • 项目链接:https://github.com/SafeAILab/EAGLE
  • Demo链接:https://huggingface.co/spaces/yuhuili/EAGLE-2

EAGLE-2在多轮对话数据集MT-bench上的加速效果(上图为贪婪生成,下图为采样生成):
无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100

无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100

使用EAGLE-2,2张RTX 3060($300)的推理速度可以超过A100($10000)。无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100
背景

投机采样使用一个小的模型快速生成草稿,原始的大语言模型可以通过一次前向计算验证草稿的正确性,将正确的草稿作为输出,从而一次生成多个token,并确保无损。EAGLE是投机采样的一种改进。它在更有规律的特征层面而不是token层面进行自回归,同时输入采样结果(超前一个时间步的token)消除了不确定性,明显提升了草稿模型的准确率。

到目前为止,EAGLE在第三方测试Spec-Bench(https://github.com/hemingkx/Spec-Bench/blob/main/Leaderboard.md)中排名第一。

思路

EAGLE和Medusa等方法使用静态的草稿树,隐式地假设草稿token的接受率和上下文无关,下面是一个简单的例子
无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100
上文是“10+2”时,下一个token难以预测,EAGLE在这个位置添加两个候选token以增加草稿命中率,“10+2=”和“10+2+”有一个正确即可。当上文是“10+2=”时,下一个token明显是“1”,但是EAGLE使用静态的草稿结构,仍然添加两个候选“1”和“3”,“10+2=3”不可能通过大语言模型的检查,存在浪费。EAGLE-2旨在解决这一问题,如下图所示,当上文是“10+2=”时,EAGLE-2只增加一个候选token“1”,将节约出的token用于让草稿树更深,这样“10+2=12”通过大语言模型的检查,EAGLE-2可以一次生成更多的token。
无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100
EAGLE-2的作者们在Alpaca数据集上进行了简单的测试,下图显示了不同位置的草稿token的接受率,左图中的P1-P6代表位置,与右图的横轴坐标对应。实验结果显示,在相同的位置上的草稿token的接受率也有较大的差异,这说明了使用动态草稿树可能取得比静态草稿树更好的效果。
无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100
上述例子中,EAGLE-2根据预测草稿token的难易程度决定草稿树的结构,精确计算难易程度(接受率)需要原始大语言模型的计算结果,这违背了投机采样减少对原始大语言模型访问的初衷。幸运的是,EAGLE的草稿模型的置信度与接受率(难易程度)高度正相关。下图显示了草稿模型不同置信度区间的草稿token的平均接受率,红色虚线连接(0,0)和(1,1)。由此可见,草稿模型的置信度可以作为接受率的有效近似。

无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100

方法

EAGLE-2包括两个阶段,扩展和重排,扩展阶段加深加大草稿树,重排阶段修剪草稿树,丢弃部分节点(token)。

为了保证无损,一个草稿token被接受的前提是它的祖先节点都被接受,所以EAGLE-2将一个节点的价值定义为它和它祖先的接受率的乘积,用置信度的乘积来近似。

在扩展阶段,EAGLE-2选择草稿树最后一层价值最高的m个节点(token)进行扩展。这些token被送入草稿模型,然后将草稿模型的输出作为子节点连接到输入节点,加深加大草稿树。在重排阶段,EAGLE-2按照价值对整棵草稿树进行重排序,保留前n个节点(token)。草稿token的置信度在0-1之间,两个节点价值相同时优先保留浅层节点,因此重排后保留的草稿树一定是连通的,保证了语义上的连贯性。重排后草稿树变小,降低了原始大语言模型验证的计算量。为了保证计算结果的正确性,还需要调整attention mask,确保每一个token只能看到它的祖先节点,不受其他分支的影响。下面是一个简单的例子。
无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100
扩展(Expand)阶段的黄色框表示被选中进行扩展的节点,绿色框为以这些节点为输入时草稿模型的预测。重排(Rerank)阶段的蓝色框表示被保留的节点,之后它们被展平成一维作为原始大语言模型的输入。EAGLE-2根据树的结构调整attention mask,比如,”a”只能看到它的祖先“It”和“is”,看不到另一个分支的“has”。EAGLE-2也同时调整位置编码,确保和标准自回归解码的一致性。

实验

EAGLE-2在多轮对话、代码、数学推理、指令遵循、问答、总结六项任务上分别使用MT-bench、Humaneval、GSM8K、Alpaca、CNN/DM、Natural Questions数据集进行了实验,与6种先进的投机采样方法(SpS、PLD、Medusa、Lookahead、Hydra、EAGLE)进行了比较。
无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100

无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100

表格中的Speedup为加速比,τ 为平均接受长度,也就是原始大语言模型每次前向计算能生成的token数。EAGLE-2每次前向计算能生成大约4-5个token,而自回归解码每次生成1个token,因此EAGLE-2明显加速了大语言模型的生成,加速比为2.5x-5x。加速比和接受长度在代码生成任务(Humaneval数据集)上最高,这是因为代码中存在大量确定性的模板,草稿更容易命中。在所有任务和大语言模型上,EAGLE-2的加速比和平均接受长度都是最高的,明显优于其他方法。

应用

EAGLE-2也在工业界得到应用,集成至Intel/intel-extension-for-transformers等。

终于介绍完啦!小伙伴们,这篇关于《无损加速最高5x,EAGLE-2让RTX 3060的生成速度超过A100》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
有效评估Agent实际表现,新型在线评测框架WebCanvas来了有效评估Agent实际表现,新型在线评测框架WebCanvas来了
上一篇
有效评估Agent实际表现,新型在线评测框架WebCanvas来了
PHP框架中如何使用事件监听器提升安全性?
下一篇
PHP框架中如何使用事件监听器提升安全性?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    14次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    29次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    27次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    35次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码