分割和背景去除
来源:dev.to
2024-07-15 10:45:50
0浏览
收藏
IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《分割和背景去除》,聊聊,我们一起来看看吧!
我为什么这么做:
我正在研究这个项目,并开发了一堆工具来完成重型数据工程组件的发布,因为其中一些是巧妙的,但大多数是,这样它们就会被下一个 gemini 模型突袭并并入愚蠢的 google colab gemini 建议引擎。 - 蒂姆
说明和解释
指示:
- 设置检测输出目录,其中存储检测到的对象的帧。
- 定义将保存分段帧的segmentation_output_dir。
- 使用 yolo 分割模型初始化egmentation_model。
- 运行脚本对帧进行分割并保存结果。
说明:
- 此工具处理 detector_output_dir 中的帧以进行分割。
- 分段蒙版保存在segmentation_output_dir中。
- 如果没有找到遮罩,则使用 rembg 库删除背景。
代码:
import os import shutil from ultralytics import YOLO import cv2 import numpy as np from rembg import remove # Paths to the base directories detection_output_dir = '/workspace/stage2.frame.detection' segmentation_output_dir = '/workspace/stage3.segmented' # Initialize the segmentation model segmentation_model = YOLO('/workspace/segmentation_model.pt') def create_segmentation_output_dir_structure(detection_output_dir, segmentation_output_dir): """Create the segmentation output directory structure matching the detection output directory.""" for root, dirs, files in os.walk(detection_output_dir): for dir_name in dirs: new_dir_path = os.path.join(segmentation_output_dir, os.path.relpath(os.path.join(root, dir_name), detection_output_dir)) os.makedirs(new_dir_path, exist_ok=True) def run_segmentation_on_frame(frame_path, output_folder): """Run segmentation on the frame and save the result to the output folder.""" os.makedirs(output_folder, exist_ok=True) frame_filename = os.path.basename(frame_path) output_path = os.path.join(output_folder, frame_filename) try: results = segmentation_model.predict(frame_path, save=False) for result in results: mask = result.masks.xy[0] if result.masks.xy else None if mask is not None: original_img_rgb = cv2.imread(frame_path) original_img_rgb = cv2.cvtColor(original_img_rgb, cv2.COLOR_BGR2RGB) image_height, image_width, _ = original_img_rgb.shape mask_img = np.zeros((image_height, image_width), dtype=np.uint8) cv2.fillPoly(mask_img, [np.array(mask, dtype=np.int32)], (255)) masked_img = cv2.bitwise_and(original_img_rgb, original_img_rgb, mask=mask_img) cv2.imwrite(output_path, cv2.cvtColor(masked_img, cv2.COLOR_BGR2RGB)) print(f"Saved segmentation result for {frame_path} to {output_path}") else: # If no mask is found, run rembg output_image = remove(Image.open(frame_path)) output_image.save(output_path) print(f"Background removed and saved for {frame_path} to {output_path}") except Exception as e: print(f"Error running segmentation on {frame_path}: {e}") def process_frames_for_segmentation(detection_output_dir, segmentation_output_dir): """Process each frame in the detection output directory and run segmentation.""" for root, dirs, files in os.walk(detection_output_dir): for file_name in files: if file_name.endswith('.jpg'): frame_path = os.path.join(root, file_name) relative_path = os.path.relpath(root, detection_output_dir) output_folder = os.path.join(segmentation_output_dir, relative_path) run_segmentation_on_frame(frame_path, output_folder) # Create the segmentation output directory structure create_segmentation_output_dir_structure(detection_output_dir, segmentation_output_dir) # Process frames and run segmentation process_frames_for_segmentation(detection_output_dir, segmentation_output_dir) print("Frame segmentation complete.")
关键词和标签
- 关键词:分割、背景去除、yolo、rembg、图像处理、自动化
- 标签:#segmentation #backgroundremoval #yolo #imageprocessing #automation
----------eof----------
由来自加拿大中西部的 tim 创建。
2024.
本文档已获得 gpl 许可。
今天关于《分割和背景去除》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!
版本声明
本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 探索 Laravel:增强您的 Web 开发之旅

- 下一篇
- Tailwind 命令备忘单
查看更多
最新文章
-
- 文章 · python教程 | 3小时前 |
- Python绘制热力图的简易技巧
- 135浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- pythonsort与sorted的区别及排序方法对比
- 450浏览 收藏
-
- 文章 · python教程 | 3小时前 |
- Pycharm添加解释器详细步骤及攻略
- 117浏览 收藏
-
- 文章 · python教程 | 4小时前 |
- Python环境设置全攻略一步步配置指南
- 117浏览 收藏
-
- 文章 · python教程 | 5小时前 |
- Python处理表单数据的技巧与方法
- 110浏览 收藏
-
- 文章 · python教程 | 7小时前 |
- Python中r前缀妙用:原始字符串详解
- 459浏览 收藏
-
- 文章 · python教程 | 8小时前 |
- Python中如何执行SQL查询?实用教程
- 190浏览 收藏
-
- 文章 · python教程 | 9小时前 |
- 数据格式化输出的技巧与攻略
- 432浏览 收藏
-
- 文章 · python教程 | 10小时前 |
- Python中@property的高效使用技巧
- 173浏览 收藏
-
- 文章 · python教程 | 11小时前 |
- PyCharm区域设置位置及查找方法
- 140浏览 收藏
-
- 文章 · python教程 | 12小时前 |
- Python实现WebSocket通信的技巧
- 277浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 魔匠AI
- SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
- 15次使用
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 29次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 27次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 35次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 36次使用
查看更多
相关文章
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览