当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗

DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗

来源:机器之心 2024-07-12 16:45:59 0浏览 收藏

有志者,事竟成!如果你在学习科技周边,那么本文《DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗

编辑 | X

近百年前,狄拉克提出正电子概念,如今在医学物理、天体物理及材料科学等多个领域都具有技术相关性。然而,正电子-分子复合物基态性质的量子化学计算具有挑战性。

在此,DeepMind 和伦敦帝国理工学院的研究人员,使用最近开发的费米子神经网络 (FermiNet) 波函数来解决这个问题,该波函数不依赖于基组。研究发现 FermiNet 可以在一系列具有各种不同定性正电子结合特性的原子和小分子中产生高度精确的、在某些情况下是最先进的基态能量。

研究人员计算了具有挑战性的非极性苯分子的结合能,发现与实验值高度一致,并得到了与使用显式相关的高斯波函数获得的湮灭率相比更有利的湮灭率。结果证明了基于神经网络波函数的方法的通用优势,并将其应用于标准分子哈密顿量以外的系统。

相关研究以《Neural network variational Monte Carlo for positronic chemistry》为题,于 6 月 18 日发布在《Nature Communications》上。

DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗

论文链接:https://www.nature.com/articles/s41467-024-49290-1随着捕获大量正电子实验装置的进步,推动了更高效计算工具的发展,以描述正电子束缚态,加速反物质技术革新。
正电子-分子复合物基态性质的量子化学计算具有挑战性。主要困难在于采用适当的基组来表示电子和正电子之间的融合(coalescence)。
尽管正电子与电子接触时会湮灭,但它们很容易与普通分子形成束缚态。已经有许多计算化学标准工具对正电子结合能和湮灭率进行了理论计算。但由于多种原因,描述正电子波函数仍然具有挑战性。
在此,研究人员提出了一种计算分子正电子束缚态基态特性的新方法,该方法基于最近为 QMC 开发的神经网络波函数假设。费米子神经网络 (FermiNet) 无需参考一组基函数即可对多体波函数进行建模。这方便地避开了上述描述正电子波函数的许多困难。
研究人员扩展了 FermiNet,以与电子分量同等地表示波函数的正电子分量。只需对神经网络架构进行最小程度的改动,就可以获得灵活而准确的混合电子-正电子波函数假设。计算了一系列具有不同正电子结合机制的系统的正电子结合能和湮灭率,并获得了这些系统基态能量的最高精度。
对正电子氢化物、钠和镁原子以及小双原子分子的结果表明,与以前的研究相比,该方法可以达到最先进的精度。此外,对非极性二锂和苯分子的结果表明,在描述完全由强电子-正电子关联效应控制的正电子结合模式时,这种精度得以保留。
下图提供了对非极性分子和正电子之间结合机制的直观理解:关联主导的结合是由远离分子原子核的电子密度增加的中心促进的。在双锂中,这是共价键;在苯中,这是由于环中 π 键的离域而导致的分子中心电子密度的增加。

DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗

图示:正电子锂和苯的基态单粒子密度。(来源:论文)该方法得到的苯的正电子结合能与实验值和英国女王大学 Hofierka 等人的多体理论非常接近。而且得到的湮没率与碱金属原子和小分子的高精度 ECG-SVM 计算结果相当。此外,使用 FermiNet 波函数积累的正电子原子和分子的 2γ 湮灭率与通过其他各种计算方法获得的结果相比较,如下表所示:
表:与通过其他各种计算方法获得的湮灭率相比,使用 FermiNet 波函数积累的正电子原子和分子的 2γ 湮灭率。(来源:论文)

DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗

1. 与其他方法比较,ECG-SVM 通过构造最能捕捉波函数的特征来计算湮没率。

2.研究发现,对于正电子氢化物、氢化锂和碱金属原子,FermiNet-VMC 和 ECG-SVM 的湮没率结果非常一致。

  1. 这表明 FermiNet-VMC 提供了准确的电子-正电子相关性描述,并且比 Hofierka 等人的多体理论结果更适合计算湮没率。
  2. 总之,ECG-SVM 方法无需系统特定的调整,即可为具有各种正电子结合机制的多种分子产生高度准确的结果。

今天关于《DeepMind开发用于量子化学计算的神经网络变分蒙特卡罗》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
首个视频思维链推理框架Video-of-Thought来了:像人一样从感知到认知全面推理视频首个视频思维链推理框架Video-of-Thought来了:像人一样从感知到认知全面推理视频
上一篇
首个视频思维链推理框架Video-of-Thought来了:像人一样从感知到认知全面推理视频
ICML 2024 | 梯度检查点太慢?不降速、省显存,LowMemoryBP大幅提升反向传播显存效率
下一篇
ICML 2024 | 梯度检查点太慢?不降速、省显存,LowMemoryBP大幅提升反向传播显存效率
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    165次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    161次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    167次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    168次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    180次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码