当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 通过深度学习预测离散时间分岔

通过深度学习预测离散时间分岔

来源:机器之心 2024-07-11 15:33:51 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《通过深度学习预测离散时间分岔》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

通过深度学习预测离散时间分岔

编辑 | 白菜叶
许多自然和人造系统都容易发生关键转变——动态方面的突然且可能具有破坏性的变化。深度学习分类器可以通过从大型模拟训练数据集中学习分叉的通用特征,为关键转变提供预警信号。到目前为止,分类器仅被训练来预测连续时间分岔,忽略了离散时间分岔所特有的丰富动态。
在这里,麦吉尔大学(McGill University)Thomas M. Bury 的研究团队训练一个深度学习分类器,为余维一的五个局部离散时间分岔提供预警信号。他们使用生理学、经济学和生态学中使用的离散时间模型的模拟数据以及经历倍周期分岔的自发跳动的鸡心聚集体的实验数据来测试分类器。
在各种噪声强度和接近分叉率的情况下,该分类器比常用的预警信号表现出更高的灵敏度和特异性。它还可以在大多数情况下预测正确的分岔,尤其是倍周期分岔、Neimark-Sacker 分岔和折叠分岔的准确度特别高。
该研究以「Predicting discrete-time bifurcations with deep learning」为题,于 2023 年 10 月 10 日发布在《Nature Communications》。

通过深度学习预测离散时间分岔

关键转变和预警信号 (EWS)
  1. 关键转变:
  2. 系统经历突然、显著的动态变化的临界阈值。
  3. 例如:心脏节律转变、金融市场崩溃、生态系统崩溃。
  4. 分岔理论:
  5. 研究动力系统在阈值处经历质变。
  6. 伴随着局部稳定性减弱(减速),导致噪声时间序列属性变化。
  7. 这些变化可用于关键转变的 EWS。
  8. 现有的 EWS:
  9. 方差和滞后 1 自相关在气候、地质、生态和心脏系统转变前发生变化。
  10. 预测能力有限,在某些系统中可能失败。
  11. 深度学习 EWS:
  12. 训练神经网络根据时间序列预测分岔类型。
  13. 从具有分叉模拟的数据库中学习通用特征。
  14. 由于分岔的普遍属性,适用于不可见时间序列。

离散时间分岔的 EWS

  • 离散时间动力系统表现出与连续时间动力系统不同的行为。
  • 生理学、流行病学和经济学中自然出现离散时间分岔。
  • 研究人员使用模拟和实验数据测试了深度学习分类器在离散时间分岔中的性能。

周期加倍分岔:

  • 离散时间分岔类型,其中事件间隔交替出现。
  • 伴随着减速,方差和滞后 1 自相关发生系统性变化。
  • 已在鸡心聚集体实验和人类心脏中观察到,可用于 EWS。

    通过深度学习预测离散时间分岔

    图示:用钾通道阻滞剂 (E-4031, 1.5 μmol) 处理后,自发跳动的鸡胚心脏细胞聚集体出现倍周期分叉。(来源:论文)

离散时间分岔

离散时间分岔有多种类型,每种类型都具有相关的动力学变化。在最新的研究中,Bury 团队重点关注余维一的五个局部分叉。在「局部」情况下,这些分岔伴随着严重的减速,因此预计会出现系统变化、方差和自相关。

预测分岔类型

然而,并非所有这些分歧都会导致关键转变。相反,它们可以平滑过渡到相交稳态(跨临界)或逐渐增加振幅的振荡(超临界内马克-萨克尔)。预测分岔类型提供了有关分岔后动力学性质的信息,而方差和自相关本身无法提供这些信息。

深度学习分类器

该团队训练一个深度学习分类器,为离散时间动态系统的分岔提供特定的 EWS。他们使用附加有高阶项和噪声的范式方程的模拟数据来训练分类器。

分类器测试

然后,该团队在心脏病学、生态学和经济学中使用的五个离散时间模型的模拟运行中测试分类器,并评估其相对于方差和滞后 1 自相关的性能。在模型模拟中改变噪声幅度和强迫率,从而评估 EWS 的稳健性。

实验验证

最后,研究人员使用经历倍周期分岔的自发跳动的鸡心聚集体的实验数据来测试分类器。

论文链接:

https://www.nature.com/articles/s41467-023-42020-z

文中关于理论的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《通过深度学习预测离散时间分岔》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
硬件战争、算力竞赛、天才博弈:量化内卷时代的破局者硬件战争、算力竞赛、天才博弈:量化内卷时代的破局者
上一篇
硬件战争、算力竞赛、天才博弈:量化内卷时代的破局者
Java 框架如何解决跨平台安全性问题?
下一篇
Java 框架如何解决跨平台安全性问题?
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    17次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    13次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    13次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    16次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    18次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码