亚马逊云创新「神经稀疏检索」:仅需要文本匹配就能实现语义搜索
本篇文章向大家介绍《亚马逊云创新「神经稀疏检索」:仅需要文本匹配就能实现语义搜索》,主要包括,具有一定的参考价值,需要的朋友可以参考一下。

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
本文作者是来自 OpenSearch 中国研发团队的机器学习负责人杨扬博士以及机器学习工程师耿志超和管聪。OpenSearch 是一个由亚马逊云科技发起的纯开源搜索和实时分析引擎项目。目前软件超过 5 亿下载量,社区在全球拥有 70 个以上的企业合作伙伴。
相关性表现在不同查询上的稳定性:zero-shot 语义检索要求语义编码模型在不同背景的数据集上都有不错的相关性表现,即要求语言模型即开即用,无需用户在自己的数据集上 fine-tune。利用稀疏编码与词向量(Term Vector)同源的特性,Neural Sparse 可以在遇到陌生文字表述(行业专有词、缩写等等)的时候向文本匹配降级,从而避免离谱的检索结果。 在线搜索的时间效率:低时延对于实时检索应用的意义是显而易见的。目前流行的语义检索方法一般都会包含语义编码以及索引两个过程,这两者的速度决定了一个检索应用端到端的检索效率。Neural Sparse 独特的 doc-only 模式,无需在线编码,即能在与文本匹配相近的时延情况下,达成与一流语言模型相媲美的语义检索的精度。 索引的存储资源消耗:商业化的检索应用对存储资源的消耗是非常敏感的。在对海量数据进行索引时,搜索引擎的运行成本与存储资源的消耗强相关。在相关实验中,索引相同规模的数据,Neural Sparse 仅需要 k-NN 索引的 1/10。同时内存消耗也大大小于 k-NN 索引。
Relevance Demo
文档主页:https://opensearch.org/docs/latest/search-plugins/neural-sparse-search/ 项目 Github 地址:https://github.com/opensearch-project/neural-search
稀疏编码与稠密编码对比
*整个系统在只运行 OpenSearch 时的内存,包括 JVM 的堆内和堆外内存
部分数据集上几个方法的相关性表现比较
两阶段式搜索速度对比
PUT /_cluster/settings{"transient" : {"plugins.ml_commons.allow_registering_model_via_url" : true,"plugins.ml_commons.only_run_on_ml_node" : false,"plugins.ml_commons.native_memory_threshold" : 99}}
2. 部署编码器
Opensearch 目前开源了 3 个模型。相关注册信息都可以在官方文档中获取。我们以 amazon/neural-sparse/opensearch-neural-sparse-encoding-v1 为例,首先使用 register API 来注册:
POST /_plugins/_ml/models/_register?deploy=true{ "name": "amazon/neural-sparse/opensearch-neural-sparse-encoding-v1", "version": "1.0.1", "model_format": "TORCH_SCRIPT"}
{"task_id": "<task_id>","status": "CREATED"}</task_id>
用 task_id 来得到详细的注册信息:
GET /_plugins/_ml/tasks/
在 API 返回中,我们可以拿到具体的 model_id:
{"model_id": "<model_id>","task_type": "REGISTER_MODEL","function_name": "SPARSE_TOKENIZE","state": "COMPLETED","worker_node": ["wubXZX7xTIC7RW2z8nzhzw"], "create_time":1701390988405,"last_update_time": 1701390993724,"is_async": true}</model_id>
在索引之前,每个文档需要被编码的文本字段需要被转变成稀疏向量。在 OpenSearch 中,这一过程是通过预处理器来自动实现的。你可以使用以下 API 来创建离线索引时的处理器管线:
PUT /_ingest/pipeline/neural-sparse-pipeline{ "description": "An example neural sparse encoding pipeline", "processors" : [ { "sparse_encoding": { "model_id": "<model_id>", "field_map": { "passage_text": "passage_embedding" } } } ]}</model_id>
如果需要开启两阶段加速功能 (非必需功能),则需要建立一个两阶段搜索管线,并在索引建立之后设置为默认的搜索管线。
建立一个默认参数的两阶段加速搜索管线方式如下,更详细的参数设置和意义请参考 2.15 及以后版本的 OpenSearch 官方文档。
PUT /_search/pipeline/two_phase_search_pipeline{ "request_processors": [ { "neural_sparse_two_phase_processor": { "tag": "neural-sparse", "description": "This processor is making two-phase processor." } } ]}
4. 设置索引
神经稀疏搜索利用 rank_features 字段类型来存储编码得到的词元和相对应的权重。索引将使用上述预处理器来编码文本。我们可以按以下方式创建索一个包含两阶段搜索加速管线的索引(如果不想开启此功能,可把 `two_phase_search_pipeline` 替换为 `_none` 或删除 `settings.search` 这一配置单元)。
PUT /my-neural-sparse-index{ "settings": { "ingest":{ "default_pipeline":"neural-sparse-pipeline" }, "search":{ "default_pipeline":"two_phase_search_pipeline" } }, "mappings": { "properties": { "passage_embedding": { "type": "rank_features" }, "passage_text": { "type": "text" } } }}
PUT /my-neural-sparse-index/_doc/{ "passage_text": "Hello world"}
在索引中进行稀疏语义搜索的接口如下,将
GET my-neural-sparse-index/_search{ "query":{ "neural_sparse":{ "passage_embedding":{ "query_text": "Hi world", "model_id": <model_id> } } }}</model_id>
今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- 开发者狂喜!Meta最新发布的LLM Compiler,实现77%自动调优效率

- 下一篇
- 看张手绘草图就能合成图形程序,加州伯克利让扩散模型掌握新技能
-
- 科技周边 · 人工智能 | 6分钟前 |
- 豆包AI生成Python代码性能分析全解析
- 467浏览 收藏
-
- 科技周边 · 人工智能 | 13分钟前 |
- Gemini情感分析测试报告出炉
- 251浏览 收藏
-
- 科技周边 · 人工智能 | 18分钟前 |
- 豆包AI如何定制小众旅行路线?
- 314浏览 收藏
-
- 科技周边 · 人工智能 | 38分钟前 |
- 讯飞星火联手ChatGPT打造知识图谱策略
- 496浏览 收藏
-
- 科技周边 · 人工智能 | 39分钟前 |
- 豆包AI编程技巧与工具使用全攻略
- 420浏览 收藏
-
- 科技周边 · 人工智能 | 50分钟前 |
- DeepSeek工具适配度排名与市场分析
- 268浏览 收藏
-
- 科技周边 · 人工智能 | 52分钟前 |
- AIOverviews能总结网页内容吗?实测分析
- 191浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- Claude多语言支持与实时翻译体验
- 430浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- AI工具变现的5种方式与场景
- 345浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 176次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 175次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 178次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 185次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 197次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览