准确率达0.96,从序列中预测蛋白-配体互作的物理化学约束图神经网络
积累知识,胜过积蓄金银!毕竟在科技周边开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《准确率达0.96,从序列中预测蛋白-配体互作的物理化学约束图神经网络》,就带大家讲解一下知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~
在药物研发中,确定小分子配体对蛋白质的结合亲和力和功能效应至关重要。目前的计算方法可以预测这些蛋白质-配体相互作用特性,但如果没有高分辨率的蛋白质结构,通常会失去准确性,并且无法预测功能效应。
莫纳什大学和格里菲斯大学的研究人员开发了 PSICHIC(PhySIcoCHemICal graph neural network),这是一个结合物理化学约束的框架,可直接从序列数据解码相互作用指纹。这使 PSICHIC 能够解码蛋白质-配体相互作用背后的机制,实现最先进的准确性和可解释性。
在没有结构数据的相同蛋白质-配体对上进行训练后,PSICHIC 在结合亲和力预测方面与领先的基于结构的方法性能相当,甚至超过了它们。
PSICHIC 的可解释指纹识别了参与相互作用的蛋白质残基和配体原子,并有助于揭示蛋白质-配体相互作用的选择性决定因素。
该研究以「Physicochemical graph neural network for learning protein–ligand interaction fingerprints from sequence data」为题,于 2024 年 6 月 17 日发布在《Nature Machine Intelligence》。
在药物发现中,确定小分子配体对蛋白质的结合亲和力和功能效应十分重要,因为配体与特定蛋白质的选择性相互作用决定了药物的预期效果。
然而,尽管目前的计算方法能够预测蛋白质-配体相互作用属性,但如果没有高分辨率蛋白质结构,预测准确性往往会降低,而且在预测功能效应方面也存在困难。
基于序列的方法虽然在成本和资源上更具优势(例如,无需昂贵的实验结构确定过程),但这些方法通常面临模式匹配中的过度自由度问题,容易导致过拟合和有限的泛化能力,从而造成与基于结构或复合物的方法之间的性能差距。
物理化学图神经网络
莫纳什大学和格里菲斯大学的研究团队开发了 PSICHIC(物理化学图神经网络),这是一种遵循物理化学原理从序列数据直接解码蛋白质-配体相互作用指纹的方法。与以前的基于序列的模型不同,PSICHIC 特别结合了物理化学约束,以实现最先进的准确性和可解释性。
作为一种基于二维序列的方法,PSICHIC 通过应用聚类算法生成并在二维图上施加这些约束,从而使 PSICHIC 能够主要适应训练期间决定蛋白质-配体相互作用的合理基本模式。
在没有结构数据的相同蛋白质-配体对上进行训练后,PSICHIC 在结合亲和力预测方面与最先进的基于结构和基于复合物的方法相媲美甚至超越了它们。
在 PDBBind v2016 和 PDBBind v2020 数据集上的实验结果表明,PSICHIC在多项指标上均优于其他基于序列的方法,如 TransCPI、MolTrans 和 DrugBAN 等。
具体而言,PSICHIC 显示了更低的预测误差和更高的相关性指数,尤其在预测准确性和泛化能力方面表现突出。PSICHIC 在功能效应预测方面实现了高达 0.96 的准确率。
此外,PSICHIC 在结合位点和关键配体功能基团的识别方面表现出色。在多个蛋白质-配体复杂结构(如 PDB 6K1S和 6OXV)的分析中,PSICHIC 能够准确定位重要的结合残基和配体功能基团,这验证了其在序列数据中直接解码蛋白质-配体相互作用模式的能力。这一能力特别体现在其通过序列数据预测蛋白质-配体结合位点和关键残基上。
图示:利用交互指纹进行虚拟筛选。(来源:论文)
有趣的是,PSICHIC 的可解释指纹表明,它获得了仅从序列数据解码蛋白质-配体相互作用的潜在机制、识别结合位点蛋白质残基和所涉及的配体原子的能力。即使仅在具有结合亲和力标签而没有相互作用信息的序列数据上进行训练也是如此。
价值体现
蛋白质-配体相互作用指纹描述了配体和蛋白质残基之间发生的特定相互作用的特征。传统上,这些指纹来自 3D 蛋白质-配体复合物,这是一个昂贵的过程,本文显示其对结构分辨率质量很敏感。
相比之下,PSICHIC 仅利用序列数据,为获取可解释的相互作用指纹提供了一种独特的方法。通过纳入约束,PSICHIC 展现出新兴能力,使其能够揭示蛋白质-配体相互作用机制并有效预测相互作用特性。PSYCHIC 消除了对 3D 数据的需求,为在大规模序列数据库上进行稳健学习铺平了道路。
作为概念验证,该团队证明了 PSICHIC 可以有效筛选候选药物并进行选择性分析。PSICHIC 只需要序列数据即可运行,有潜力成为药物发现中普遍有用的工具。研究人员期待它在从头配体设计中发挥作用,PSICHIC 的可解释指纹可以整合到其中以优化分子结构。
未来展望
目前,PSICHIC 仅限于分析单个蛋白质的蛋白质-配体相互作用。未来计划包括将其分析扩展到蛋白质复合物,例如与异三聚体 G 蛋白复合的 GPCR,这可以促进直接从序列数据全面研究蛋白质-配体动力学。
此外,PSICHIC 从序列数据中获得的强大学习能力为探索变构调节等复杂相互作用铺平了道路,有助于理解变构配体如何调节蛋白质靶标内的正构配体。
该团队已将他们的数据、代码和优化模型提供给更广泛的科学界。PSICHIC 已在各个应用领域中证明其稳健性和有效性,在未来发展中具有广阔的潜力,并有望对虚拟化合物筛选领域和创新小分子疗法的设计产生重大影响。
论文链接:https://www.nature.com/articles/s42256-024-00847-1
相关报道:https://phys.org/news/2024-06-ai-tool-rapid-effective-drug.html
好了,本文到此结束,带大家了解了《准确率达0.96,从序列中预测蛋白-配体互作的物理化学约束图神经网络》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

- 上一篇
- 寒武纪1号诞生:谢赛宁Yann LeCun团队发布最强开源多模态LLM

- 下一篇
- 将图像自动文本化,图像描述质量更高、更准确了
-
- 科技周边 · 人工智能 | 21分钟前 |
- 美图WHEEMiracleF1AI图像生成模型震撼发布
- 413浏览 收藏
-
- 科技周边 · 人工智能 | 56分钟前 |
- 保时捷辟谣:未停售电动车,新Cayenne纯电
- 249浏览 收藏
-
- 科技周边 · 人工智能 | 2小时前 |
- DevDocs—开源技术文档爬取处理神器
- 129浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 3月末乘用车库存335万辆,环比增27万
- 325浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 24次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 38次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 38次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 50次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 41次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览