CVPR 24|ETH Zurich等团队:重新定义小样本3D分割任务,新基准开启广阔提升潜力!
来源:机器之心
2024-06-24 13:42:30
0浏览
收藏
今天golang学习网给大家带来了《CVPR 24|ETH Zurich等团队:重新定义小样本3D分割任务,新基准开启广阔提升潜力!》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
该文章的第一作者安照崇,目前在哥本哈根大学攻读博士学位,导师为Serge Belongie。他硕士毕业于苏黎世联邦理工学院(ETH Zurich),在硕士期间,他在导师Luc Van Gool的实验室中参与了多个研究项目。他的主要研究方向包括场景理解、小样本学习以及多模态学习。
3D场景理解让人形机器人「看得见」周身场景,使汽车自动驾驶功能能够实时感知行驶过程中可能出现的情形,从而做出更加智能化的行为和反应。而这一切需要大量3D场景的详细标注,从而急剧提升时间成本和资源投入。

论文链接: https://arxiv.org/abs/2403.00592 代码链接: https://github.com/ZhaochongAn/COSeg

第一个问题是前景泄漏:3D任务通常将场景点云中的密集点均匀采样后作为模型的输入。然而FS-PCS采用的采样方法并非均匀采样,而是会对目标类别(前景区域)采样更多的点,对非目标区域(背景区域)采样更少的点,这样得到的输入点云会在前景有更密集的点分布,导致了前景泄露问题。如图1所示,第四和第六列的输入点云来自于当前的有偏采样,在前景区域(door或board)展示出比背景更密集的点分布,而第三和第五列的输入使用改正后的一致性采样,展示出了均匀的点密度分布。该问题使得新类的信息被点云的密度分布所泄漏,从而允许模型简单的利用输入点云中的密度差异,预测更密集的区域为前景就可以实现良好的few-shot性能,而非依赖于学习从support到query的知识转移能力。因此当前的评价benchmark无法反映过往模型的真实性能。如表1所示,将当前setting中的前景泄露改正后,过往模型展示出了大的性能下降,表明了过往模型极大的依赖于密度的差异来实现看似优越的few-shot性能。 第二个问题是稀疏点分布:当前的setting仅从场景中采样2048个点作为模型在训练和测试时的输入,这样稀疏的点分布严重限制了输入场景的语义清晰度。如图1所示,在第一行第五列中,人类肉眼都难以区分出区域中的语义类别door和周围的类别wall。对第二行也同样很困难来区分目标区域为board类或是其他的类别如window。这些稀疏的输入点云有非常受限的语义信息,引入了显著的歧义性,限制了模型有效挖掘场景中语义的能力。
在文中的新setting下,虽然COSeg实现了最佳性能,但仍然有很大的进步空间,可以改进模型以实现更优的few-shot泛化:如改进prototype的抽取方式 [1,2],改进correlation优化模块 [3],对每个few-shot任务做针对性的训练 [4]。 解决Base类别干扰问题也是影响Few-shot性能的关键因素,可以从训练或模型设计角度进行优化 [5,6],更好的减少Base类别的干扰。 提高模型的训练和推理效率 [7],特别是在部署到实际应用时,模型的效率也是一个关键考量。
终于介绍完啦!小伙伴们,这篇关于《CVPR 24|ETH Zurich等团队:重新定义小样本3D分割任务,新基准开启广阔提升潜力!》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!
版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 纯白魅力,华硕Dual RTX 4070 (SUPER) EVO White显卡重磅推出

- 下一篇
- 字节豆包全新图像Tokenizer:生成图像最低只需32个token,最高提速410倍
查看更多
最新文章
-
- 科技周边 · 人工智能 | 29分钟前 | 效率提升 代码生成 asyncio 豆包AI Python异步编程
- 豆包AI玩转Python异步编程,效率提升不止一点点!
- 150浏览 收藏
-
- 科技周边 · 人工智能 | 44分钟前 | 代码生成 代码检查 豆包AI Python异步编程 异步库
- 豆包AI带你手把手学Python异步编程,超简单!
- 194浏览 收藏
-
- 科技周边 · 人工智能 | 47分钟前 |
- 豆包AI手把手教你用Python解析XML文件,soeasy!
- 463浏览 收藏
-
- 科技周边 · 人工智能 | 49分钟前 | 台积电 半导体产业 亚利桑那州 SEMICONWest 芯片法案
- SEMICON首次亮相亚利桑那,SEMI强势入驻硅谷!
- 456浏览 收藏
-
- 科技周边 · 人工智能 | 56分钟前 |
- 豆包AI手把手教你写区块链智能合约!5大技巧打造安全Solidity代码
- 119浏览 收藏
-
- 科技周边 · 人工智能 | 59分钟前 |
- Midjourney+PS教程:手把手教你把AI生成的图调得超绝了
- 128浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 豆包AI手把手教你用Python协程搞定异步编程
- 363浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- 茅茅虫AIGC检测
- 茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
- 96次使用
-
- 赛林匹克平台(Challympics)
- 探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
- 101次使用
-
- 笔格AIPPT
- SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
- 108次使用
-
- 稿定PPT
- 告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
- 102次使用
-
- Suno苏诺中文版
- 探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
- 102次使用
查看更多
相关文章
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览