当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

来源:机器之心 2024-06-17 20:09:10 0浏览 收藏

哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果
AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

当前主流的视觉语言模型(VLM)主要基于大语言模型(LLM)进一步微调。因此需要通过各种方式将图像映射到 LLM 的嵌入空间,然后使用自回归方式根据图像 token 预测答案。

在这个过程中,模态的对齐是通过文本 token 隐式实现的,如何做好这一步的对齐非常关键。

针对这一问题,武汉大学、字节跳动豆包大模型团队和中国科学院大学的研究人员提出了一种基于对比学习的文本 token 筛选方法(CAL),从文本中筛选出与图像高度相关的 token,并加大其损失函数权重,从而实现更精准的多模态对齐。

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

  • 论文链接:https://arxiv.org/pdf/2405.17871
  • 代码链接:https://github.com/foundation-multimodal-models/CAL

CAL 有以下几个亮点:

  • 可以直接嵌套到训练过程,无需额外预训练阶段。
  • 在 OCR 和 Caption benchmarks 上获得了明显的提升,从可视化中可以发现 CAL 使得图片模态对齐效果更好。
  • CAL 使得训练过程对噪声数据抵抗能力更强。

研究动机

目前视觉语言模型依赖于图片模态的对齐,如何做好对齐非常关键。目前主流的方法是通过文本自回归的方式进行隐式对齐,但是每个文本 token 对图像对齐的贡献是不一致的,对这些文本 token 进行区分是非常有必要的。

CAL 提出,在现有的视觉语言模型(VLM)训练数据中,文本 token 可以被分为三类:

  • 与图片高度相关的文本:如实体(例如人、动物、物体)、数量、颜色、文字等。这些 token 与图像信息直接对应,对多模态对齐至关重要。
  • 与图片低相关度的文本:如承接词或可以通过前文推断出的内容。这些 token 实际上主要是在训练 VLM 的纯文本能力。
  • 与图片内容相悖的文本:这些 token 与图像信息不一致,甚至可能提供误导信息,对多模态对齐过程产生负面影响。

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

                                图一:绿色标记为与图片高度相关 token,红色为内容相悖,无色为中性 token

在训练过程中,后两类 token 整体而言实际上占据了较大比例,但由于它们并不强依赖于图片,对图片的模态对齐作用不大。因此,为了实现更好的对齐,需要加大第一类文本 token,即与图片高度相关部分 token 的权重。如何找出这一部分 token 成为了解决这个问题的关键所在。

方法

找出与图片高度相关 token 这个问题可以通过 condition contrastive 的方式来解决。

  •  对于训练数据中的每个图文对,在没有图片输入的情况下,每个文本 token 上的 logit 代表着 LLM 基于上下文情况和已有知识对这种情况出现的估计值。
  • 如果在前面添加图片输入,相当于提供额外的上下文信息,这种情况下每个 text token 的 logit 会基于新的情况进行调整。这两种情况的 logit 变化量代表着图片这个新的条件对每个文本 token 的影响大小。

具体来说,在训练过程中,CAL 将图文序列和单独的文本序列分别输入到大语言模型(LLM)中,得到每个文本 token 的 logit。通过计算这两种情况下的 logit 差值,可以衡量图片对每个 token 的影响程度。logit 差值越大,说明图片对该 token 的影响越大,因此该 token 与图像越相关。下图展示了文本 token 的 logit diff 和 CAL 方法的流程图。
字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果
                         图二:左图是对两种情形下 token logit diff 的可视化,右图是 CAL 方法流程的可视化

实验

CAL 在 LLaVA 和 MGM 两个主流模型上进行了实验验证,在不同规模的模型下均实现了性能提升。

包含以下四个部分的验证:

(1)使用 CAL 的模型在各项基准测试指标上表现更佳。

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

(2) 通过按比例随机交换两个图文对中的文本来制造一批噪声数据(图文错配),并用于模型训练,CAL 使得训练过程具有更强的数据抗噪性能。字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果
                              图三:在不同强度训练噪声情况下,CAL 与基线的性能表现

(3)对 QA case 中的答案部分计算其与图片 token 的注意力分数分布,并将其绘制在原图上,CAL 训练的模型拥有更清晰的注意力分布图。

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

                             图四:基线与 CAL 的 attention map 可视化,每对中的右边为 CAL

(4)将每个图片 token 映射为它最相似 LLM 词表中的文本 token,将其绘制到原图上,CAL 训练的模型映射内容更接近图片内容。字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果
                              图五:将 image token 映射为最相似词表 token,并对应到原图上

团队介绍:

字节跳动豆包大模型团队成立于 2023 年,致力于开发业界最先进的 AI 大模型技术,成为世界一流的研究团队,为科技和社会发展作出贡献。

豆包大模型团队在 AI 领域拥有长期愿景与决心,研究方向涵盖 NLP、CV、语音等,在中国、新加坡、美国等地设有实验室和研究岗位。团队依托平台充足的数据、计算等资源,在相关领域持续投入,已推出自研通用大模型,提供多模态能力,下游支持豆包、扣子、即梦等 50 + 业务,并通过火山引擎开放给企业客户。目前,豆包 APP 已成为中国市场用户量最大的 AIGC 应用。欢迎加入字节跳动豆包大模型团队。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
以‘重新定义轿车’为口号,张勇宣布哪吒新车8月发布,9月正式交付市场以‘重新定义轿车’为口号,张勇宣布哪吒新车8月发布,9月正式交付市场
上一篇
以‘重新定义轿车’为口号,张勇宣布哪吒新车8月发布,9月正式交付市场
3D 版 SORA 来了!DreamTech 推出全球首个原生 3D-DiT 大模型 Direct3D
下一篇
3D 版 SORA 来了!DreamTech 推出全球首个原生 3D-DiT 大模型 Direct3D
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    26次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    21次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    23次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    23次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    25次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码