打通智能体「自我进化」全流程!复旦推出通用智能体平台AgentGym
来源:机器之心
2024-06-13 13:54:10
0浏览
收藏
今天golang学习网给大家带来了《打通智能体「自我进化」全流程!复旦推出通用智能体平台AgentGym》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
论文链接:https://arxiv.org/abs/2406.04151 AgentGym代码仓库:https://github.com/WooooDyy/AgentGym
依赖于人类监督的行为克隆(Behavior Cloning)方法,需要智能体逐步模仿专家提供的轨迹数据。这种方法虽然有效,但由于标注资源的限制,难以扩展。对环境的探索也较为有限,容易遇到性能或泛化性的瓶颈。 允许智能体根据环境反馈,不断提高能力的自我改进(Self Improving)方法,减少了对人类监督的依赖,同时丰富对环境的探索深度。然而,它们通常在特定任务的孤立环境中进行训练,得到一批无法有效泛化的专家智能体。
多样化的环境和任务,允许智能体动态且全面地进行交互、训练,而不是被局限于某个孤立的环境。 一个适当大小的轨迹数据集,帮助智能体配备基本的指令遵循能力和基础任务知识。 一种有效且可扩展的进化算法,激发智能体在不同难度环境中的泛化能力。
「AgentGym」,一个包含 14 种具体环境,89 种具体任务类型的交互平台(图2),为大语言模型智能体训练提供支持。该平台基于 HTTP 服务,为不同环境提供了一个统一的 API 接口,支持轨迹采样、多轮交互、在线评估和实时反馈。 「AgentEval」,一个具有挑战性的智能体测试基准。「AgentTraj」和「AgentTraj-L」,通过指令增强和众包 / SOTA 模型标注构建的专家轨迹数据集。经过格式统一和数据过滤,帮助智能体学习基本的复杂任务解决能力。 「AgentEvol」,一种激发智能体跨环境自我进化的全新算法。该算法的动机在于,期望智能体在面对先前未见的任务和指令时进行自主探索,从新的经验中进行学习与优化。
「探索步骤(Exploration Step)」:在这一步骤中,智能体在当前策略下与环境进行交互,生成新的轨迹并评估其奖励,形成一个估计的最优策略分布。具体而言,智能体与多个环境进行交互,生成一系列的行为轨迹。每条轨迹都是智能体根据当前策略与环境互动的产物,包括智能体的思考,智能体的行为,以及环境的观测。然后,环境端会根据轨迹与任务目标的匹配程度,为每条轨迹给出奖励信号。 「学习步骤(Learning Step)」:在这一步骤中,智能体根据估计的最优策略分布更新参数,使其更加接近于最优策略。具体而言,智能体利用在探索步骤中收集到的轨迹与奖励数据,通过一个基于轨迹奖励加权的优化目标函数来优化自己。注意,在学习步骤中,为了减少过拟合,作者优化的总是「基础通用智能体」,而不是上一轮优化得到的智能体。



复旦大学自然语言处理实验室,是由复旦大学首席教授吴立德先生创建,是我国最早开展自然语言处理和信息检索研究的实验室之一。在国家自然科学基金、国家863/973/重点研发计划、省部委基金的支持下,发表了大量高水平国际期刊和会议论文。实验室在学术带头人黄萱菁教授的带领下,围绕大模型前沿方向,在语言大模型、多模态大模型、大模型对齐、智能体等方面开展系统深入的研究,产生了MOSS、眸思等一系列有较大学术影响的工作,并与国内外科技领军企业建立密切的合作关系。
复旦大学视觉与学习实验室由姜育刚教授创立,现有教师7人,在读硕博士研究生80余人,已毕业研究生30余人。实验室主要从事计算机视觉和多模态人工智能理论与应用的研究,旨在研发准确、快速、可扩展和值得信赖的 AI 算法,让机器具备像人一样的学习、感知和推理的能力。实验室承担了科技创新2030—“新一代人工智能”重大项目、国家自然科学基金重点基金、国家重点研发计划课题、上海市科技创新行动计划等国家和地方的重要科研项目,以及华为、腾讯、百度等企业的技术攻关需求。
今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除

- 上一篇
- 打通智能体「自我进化」全流程!复旦推出通用智能体平台AgentGym

- 下一篇
- 快手「可灵」爆火:海外AI圈巨震,中国版Sora一号难求
查看更多
最新文章
-
- 科技周边 · 人工智能 | 27分钟前 |
- MistralAI发布多模态模型MistralMedium3
- 446浏览 收藏
-
- 科技周边 · 人工智能 | 52分钟前 |
- 一季度中国车出口TOP10:俄罗斯位列第三
- 318浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 即梦ai导出4K视频攻略超清分辨率设置教程
- 241浏览 收藏
-
- 科技周边 · 人工智能 | 1小时前 |
- 用豆包A/生成的表情包如何赚钱
- 326浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 | 即梦AI会员升级 即梦AI成长体系
- 即梦ai会员升级攻略成长体系详解
- 135浏览 收藏
查看更多
课程推荐
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
查看更多
AI推荐
-
- PPTFake答辩PPT生成器
- PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
- 6次使用
-
- Lovart
- SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
- 6次使用
-
- 美图AI抠图
- 美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
- 26次使用
-
- PetGPT
- SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
- 24次使用
-
- 可图AI图片生成
- 探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
- 51次使用
查看更多
相关文章
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览