当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Nature重磅:微软潘海峰华盛顿大学王晟团队发布首个全切片数字病理学模型GigaPath

Nature重磅:微软潘海峰华盛顿大学王晟团队发布首个全切片数字病理学模型GigaPath

来源:机器之心 2024-06-03 22:36:37 0浏览 收藏

哈喽!今天心血来潮给大家带来了《Nature重磅:微软潘海峰华盛顿大学王晟团队发布首个全切片数字病理学模型GigaPath》,想必大家应该对科技周边都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习科技周边,千万别错过这篇文章~希望能帮助到你!

Nature重磅:微软潘海峰华盛顿大学王晟团队发布首个全切片数字病理学模型GigaPath

 编辑 | ScienceAI

近年来,数字病理学的蓬勃发展成为了精准医学加速突破的重要组成部分。在癌症护理过程中,利用全切片成像技术将肿瘤组织样本转换为高分辨率的数字图像,已经成为常规技术。高达十亿像素级别的病理学图片包含多样的肿瘤微环境信息,为癌症分型诊断,生存率分析以及精准免疫治疗提供了前所未有的契机。

近期,生成式人工智能革命为准确感知、分析病理学图片中的海量信息提供了强有力的解决方案。与此同时,多模态生成式人工智能技术的突破更将助力从时空多尺度理解数字病理学图片并与其他生物医学模态相融合,从而更好地刻画患者疾病演变、发展过程,协助医生进行临床诊断和治疗。 传统的病理学诊断主要依赖专业医生肉眼观察,但其受限于人工观察的有限尺度和主观判断的局限性。借助生成式人工智能技术,可以将大量的数字病理学图片作为输入进行分析,从而提供更全面、客观的诊断结果。 多模态生成式人工智能技术突破了单一模态的限制,能够结合多种模态的信息进行综

然而,由于数字病理学图片的大规模、高像素、特征复杂等特点,从计算角度高效处理和理解其中的复杂模式十分困难。每张全切片数字化转型之后将包含数十亿像素,其面积达到自然图像的十几万倍,应用现有的计算机视觉模型难度较大。传统的视觉模型,如Vision Transformer,其计算复杂度随着输入图片的大小的增加快速上升。同时,临床医学数据具有跨尺度、多模态和高噪声等特点,而现有的病理学模型大多基于标准公开数据集,依然同现实世界的应用具有不小的距离。

根据此,来自微软研究院、美国Providence的医疗网络和华盛顿大学的研究人员,共同提出了首个全切片尺度的数字病理学模型GigaPath。

GigaPath模型采取两阶段的连结结构,和微软研究院近期开发的LongNet架构,高效解决了十亿像素级别图像的处理和理解问题。Providence的研究人员收集到旗下28家美国医院的3万病人授权17万张全切片病理学图像,共计13亿张病理学图块。微软、华盛顿大学和Providence的研究人员合作,将GigaPath在这些真实世界数据上进行了大规模模型预训练。

根据实验结果表明,GigaPath团队完成了26个任务,包含9个癌症分型和17项疾病理组学任务。在其中25项任务取得领先效果,其中18项任务中显示出高于现有方法。

研究人员相信,该研究展示了全切片尺度层面的建模和大规模真实世界数据的预训练极其重要,同时,GigaPath也将为更加先进的癌症护理和临床发现提供全新可能。

值得一提的是,GigaPath的模型和代码已经开源,研究人员欢迎世界各地的研究者一道探索和使用GigaPath。

相关研究以《A whole-slide foundation model for digital pathology from real-world data》为题,于 5 月 22 日发布在《Nature》上。

Nature重磅:微软潘海峰华盛顿大学王晟团队发布首个全切片数字病理学模型GigaPath
论文链接: https://www.nature.com/articles/s41586-024-07441-w
模型开源地址:https://huggingface.co/prov-gigapath/prov-gigapath
代码开源地址: https://github.com/prov-gigapath/prov-gigapath

方法

Nature重磅:微软潘海峰华盛顿大学王晟团队发布首个全切片数字病理学模型GigaPath

图1:GigaPath模型示意图。

GigaPath采用两阶段课程学习,包括使用DINOv2的图块级预训练和使用带有 LongNet 的掩码自动编码器的全切片级预训练(见图1)。DINOv2是一种标准的自监督方法,在训练教师和学生Vision Transformer时结合了对比损失和掩码重建损失。然而,由于自注意力自身带来的计算挑战,其应用仅限于小图像,例如256 × 256图块。 

对于全切片级建模,我们将扩张注意力(Dilated Attention)从LongNet (https://arxiv.org/abs/2307.02486) 应用于数字病理学(见图2)。

为了处理整张全切片的长图像图块序列,我们引入了一系列递增的尺寸,用于将图块序列细分为给定尺寸的片段。对于较大的片段,LongNet引入稀疏注意力,稀疏性与片段长度成正比,从而抵消平方增长。最大的尺寸片段将覆盖整个全切片。这能够以系统的方式捕获远程依赖关系,同时保持计算的易处理性(上下文长度呈线性)。

Nature重磅:微软潘海峰华盛顿大学王晟团队发布首个全切片数字病理学模型GigaPath

图2:LongNet模型示意图。

主要实验结果

在癌症分型诊断方面,任务目标定位于根据病理切片对细粒度亚型进行分类。例如,对于卵巢癌,模型需要区分六种亚型:透明细胞卵巢癌、子宫内膜样卵巢癌、高级别浆液性卵巢癌、低级别浆液性卵巢癌、粘液性卵巢癌和卵巢癌肉瘤。

GigaPath在所有九项癌症分型任务中均获得领先效果,在其中六项癌症类别分型中准确率提升具有显著性。对于六种癌症(乳腺癌、肾癌、肝癌、脑癌、卵巢癌、中枢神经系统癌),GigaPath的AUROC达到90%或更高。这对于癌症诊断和预后等精准健康领域的下游应用来说是个好的开始。

在病理组学任务中,任务目标定位于仅根据全切片图像预测肿瘤是否表现出特定的临床相关基因突变。该预测任务有助于揭示组织形态和遗传途径之间难以被人类察觉的丰富联系。除了一些已知特定癌症类型和基因突变对之外,全切片图像中存在多少基因突变信号仍是一个尚无答案的问题。此外,在一些实验中,研究人员考虑了泛癌场景,即在所有癌症类型和非常多样化的肿瘤形态中识别基因突变的通用信号。 

在如此具有挑战性的场景中,GigaPath在17项任务中的16项中再次达到了领先性能,并在其中12项任务中显著优于第二名。Gigapath可以在整个全切片水平上提取遗传相关的泛癌和亚型特异性形态特征,为真实世界场景下的复杂未来研究方向打开了大门。

此外,研究者通过引入病理报告进一步证明了GigaPath在多模态视觉语言任务上的潜力。此前,关于病理视觉语言预训练的工作往往集中在图块级别的小图像上。

相反,GigaPath探索全切片级别的视觉语言预训练。通过继续对病理学报告对进行预训练,利用报告语义来对齐病理学图像的隐空间表征。这比传统的视觉语言预训练更具挑战性,在不利用任何单个图像图块和文本片段之间的细粒度对齐信息的情况下,GigaPath在标准视觉语言任务中显著优于三种最先进的病理学视觉语言模型。

总结

通过丰富全面的实验,研究人员证明了GigaPath的相关研究工作是全切片层面预训练和多模态视觉语言建模层面的良好实践。

值得一提的是,尽管GigaPath在多任务上取得了领先效果,在某些特定任务层面依然具有较大的进步空间。同时,尽管研究人员探索了视觉语言多模态任务,但在朝向搭建病理学层面的多模态对话助手的道路上,依然有很多具体问题需要探索。

作者信息

GigaPath是横跨微软研究院、Providence医疗系统和华盛顿大学保罗艾伦计算机学院的合作项目。其中,来自微软研究院和华盛顿大学的二年级博士生许涵文和来自微软研究院的首席研究员Naoto Usuyama为论文共同第一作者。来自微软研究院Health Futures团队的General Manager Dr. Hoifung Poon (潘海峰), 华盛顿大学的王晟教授,以及Providence的Dr. Carlo Bifulco为论文的共同通讯作者。

许涵文:华盛顿大学二年级在读博士生。研究方向为AI和医学交叉。科研成果发表于Nature, Nature Communications, Nature Machine Intelligence, AAAI等。曾担任Nature Communications, Nature Computational Science等子刊审稿人。

王晟:华盛顿大学计算机系助理教授,研究方向专注于AI和医学交叉。科研成果发表于Nature, Science, Nature Biotechnology, Nature Machine Intelligence and The Lancet Oncology, 研究转化成果被Mayo Clinic, Chan Zuckerberg Biohub, UW Medicine,Providence等多个医疗机构使用。

潘海峰:微软研究院Health Futures General Manager,研究方向为生成式AI基础研究以及精准医疗应用。在多个AI顶会获最佳论文奖,在HuggingFace上发布的开源生物医学大模型总下载量达数千万次,部分研究成果开始在合作的医疗机构和制药公司中转化为应用。

今天关于《Nature重磅:微软潘海峰华盛顿大学王晟团队发布首个全切片数字病理学模型GigaPath》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
物理传热启发的视觉表征模型vHeat来了,尝试突破注意力机制,兼具低复杂度、全局感受野物理传热启发的视觉表征模型vHeat来了,尝试突破注意力机制,兼具低复杂度、全局感受野
上一篇
物理传热启发的视觉表征模型vHeat来了,尝试突破注意力机制,兼具低复杂度、全局感受野
腾讯游戏 2024 年端午节假期未成年人游戏限玩通知发布:共 4 小时,每天 1 小时
下一篇
腾讯游戏 2024 年端午节假期未成年人游戏限玩通知发布:共 4 小时,每天 1 小时
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    16次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    15次使用
  • 可图AI图片生成:快手可灵AI2.0引领图像创作新时代
    可图AI图片生成
    探索快手旗下可灵AI2.0发布的可图AI2.0图像生成大模型,体验从文本生成图像、图像编辑到风格转绘的全链路创作。了解其技术突破、功能创新及在广告、影视、非遗等领域的应用,领先于Midjourney、DALL-E等竞品。
    43次使用
  • MeowTalk喵说:AI猫咪语言翻译,增进人猫情感交流
    MeowTalk喵说
    MeowTalk喵说是一款由Akvelon公司开发的AI应用,通过分析猫咪的叫声,帮助主人理解猫咪的需求和情感。支持iOS和Android平台,提供个性化翻译、情感互动、趣味对话等功能,增进人猫之间的情感联系。
    44次使用
  • SEO标题Traini:全球首创宠物AI技术,提升宠物健康与行为解读
    Traini
    SEO摘要Traini是一家专注于宠物健康教育的创新科技公司,利用先进的人工智能技术,提供宠物行为解读、个性化训练计划、在线课程、医疗辅助和个性化服务推荐等多功能服务。通过PEBI系统,Traini能够精准识别宠物狗的12种情绪状态,推动宠物与人类的智能互动,提升宠物生活质量。
    38次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码