当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > ASQuery:基于Query的时序动作分割新架构

ASQuery:基于Query的时序动作分割新架构

来源:机器之心 2024-06-03 16:42:31 0浏览 收藏

怎么入门科技周边编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《ASQuery:基于Query的时序动作分割新架构》,涉及到,有需要的可以收藏一下

ASQuery:基于Query的时序动作分割新架构

1. 前言

北京邮电大学与EVOL创新团队和ACG工业算法组针对时序动作分割任务共同提出了基于query新架构的模型ASQuery。ASQuery包含了动作及边界两种query,利用动作query将原先的帧维度分类过程转化为query与视频帧的相似度计算过程,提高了分类精度;利用边界query预测动作的边界,进一步平滑了原先的预测结果,大大缓解了过分割现象。论文ASQuery: A Query-based Model for Action Segmentation 已被ICME2024接收。论文地址:https://github.com/zlngan/ASQuery/blob/main/paper.pdf

2. 背景和动机

现有的时序动作分割模型通常将该任务建模为帧级别的分类问题,通用范式为先建模视觉的时序信息,提取到具有较强表征能力的视觉帧特征,然后使用分类器对每帧进行判断。在这种范式中,每个视频帧的最后预测结果严重依赖于分类器,但其权重在训练完毕后已固定,因此在推理的时候存在灵活性。其次,当前方法通常存在过分割现象,为了解决该问题,MS-TCN和ASFormer使用多层优化网络来平滑网络的预测结果,但是这些边界分割支和分类分支是独立训练的,难以实现联合优化。这些问题导致模型的预测结果准确率低且平滑性差,严重影响了算法的实际应用。

ASQuery:基于Query的时序动作分割新架构

图1 ASQuery与其它算法的框架对比

为了解决上述问题,我们提出了一种基于query的时序动作分割算法,称为ASQuery。相比于之前的算法,我们的算法将帧维度的分割问题转化为动作query与视频帧特征的相似度计算问题。每类动作的语义中心由一个query表示,并通过Transformer解码器模块进行动态更新,因此它们能够更加灵活且综合地感知整个视频的特征。对于过分割问题,我们提出边界query的概念,它与动作query一起训练进行联合优化。边界query通过与帧特征求相似度得到动作边界的分布,利用该边界可以进一步调整动作类别预测的结果,从而得到更加平滑的预测。通过与帧特征求相似度得到动作边界的分布,利用该边界可以进一步调整动作类别预测的结果,从而得到更加平滑的预测。

2. 方法

ASQuery的模型结构如图所示,它主要包含三个模块。首先是特征提取模块,它由一个backbone和neck组成,主要用于聚合与增强多层级视频特征;其次是Transformer解码器模块,用于更新动作及边界query;最后是分割模块,用于得到动作及边界分数,以及获得最终的预测结果。

ASQuery:基于Query的时序动作分割新架构

特征提取模块的输入为经过预处理的视频特征,输出为多尺度增强的特征。构建Backbone时,ASQuery首先使用了几层浅层的卷积网络,起到聚合局部信息并稳定后续Transformer网络训练的作用。随后ASQuery使用了加窗形式的Transformer网络,每次自注意力计算仅对窗口内部的视频帧进行建模,并通过滑动窗口的方式覆盖所有的视频帧,以此实现时间感受野与计算效率的平衡。对于Neck网络,ASQuery采用最简单的1D特征金字塔网络来进一步增强特征。

Transformer解码器模块输入为随机初始化的动作、边界query以及多尺度视频特征,输出为更新后的动作与边界query。ASQuery使用标准的Transformer解码器,其包含若干层Transformer解码层,每层包含多个Transformer解码块。这些解码块与Neck的输出特征一一对应,解码块将动作和边界query作为Query,将视频特征作为Key和Value。每个解码块内部,包含了一层自注意力层与一层互注意力层。在自注意力层中,动作query与边界query进行交互,使得每个query都感知了所有动作类别及动作边界的语义信息,因此可以提升其表征能力。在互注意力层中,动作与边界query与所有视频帧特征进行交互,帮助其对整个视频的特征进行综合感知。训练后,解码器输出的动作及边界query能够有效表征动作类别及边界信息。

分割模块使用包含两层隐藏层的MLP将动作及边界query映射为对应embedding,随后通过将embedding与视频特征进行点积,并通过sigmoid函数将其变换至0-1区间,由此得到动作及边界分数。最后结合类别预测与边界预测结果得到最终分割结果。

损失函数分为两部分,第一部分为动作类别损失,包含了视频帧分类的focal loss以及动作mask的dice loss。第二部分为边界预测损失,使用的是二进制交叉熵损失。边界的标签ASQuery:基于Query的时序动作分割新架构为以动作边界帧为中心,呈高斯分布。

ASQuery:基于Query的时序动作分割新架构

3. 实验结果

ASQuery在时序动作分割任务的常用数据集Breakfast和Assembly101上取得了SOTA的结果。ASQuery还通过消融实验验证了动作及边界query的有效性。

ASQuery:基于Query的时序动作分割新架构

ASQuery:基于Query的时序动作分割新架构

通过下图的可视化结果可以看到预测的边界对于平滑预测的有效性。

ASQuery:基于Query的时序动作分割新架构

3. 总结

ASQuery提出基于Query架构的时序动作分割新架构,其提出的动作query可以实现更高精度的分类效果,边界query可以达到更好的预测平滑度。如何将query架构中的其它技术如匈牙利匹配等引入时序动作分割任务,进一步提升模型效果,是我们后面的探索方向。

作者介绍:

淦子良: 北京邮电大学博士研究生,研究方向为人体行为理解,发表了多篇SCI及EI论文。

金磊:北京邮电大学特聘副研究员,博士生导师,研究方向为人体感知理解、具身智能,现有工作聚焦于基于计算机视觉的人体姿态估计、人体解析、行为理解等,相关成果发表在CVPR/AAAI/ACMMM/TMM等CCF-A类和中科院一区期刊会议10余篇,主持一项国家自然基金青年基金,参与两项国家重点研发项目以及四项国家自然基金面上项目。多次依托国内及国际会议组织ICCV2021/CVPR2023/FG2024/PRCV2024研讨会。

赵健:中国电信人工智能研究院多媒体认知学习实验室(EVOL Lab)负责人、青年科学家,西北工业大学光电与智能研究院研究员、博导,博士毕业于新加坡国立大学,研究兴趣包括多媒体分析、临地安防、具身智能。

共发表CCF-A类论文50余篇,含一作T-PAMI×2(IF: 24.314)、IJCV×3(IF: 13.369),第一发明人授权国家发明专利5项。相关技术成果在百度、蚂蚁金服、奇虎360等6个科技行业领军企业得到应用,产生了显著效益。曾入选中国科协及北京市科协“青年人才托举工程”,主持国自然青年科学基金等项目6项。曾获吴文俊人工智能优秀青年奖(2023)、吴文俊人工智能自然科学奖一等奖(2/5,2022)、新加坡模式识别与机器智能协会(PREMIA)Lee Hwee Kuan奖、ACM Multimedia唯一最佳学生论文奖(一作,1/208,CCF-A类会议,2018),7次在国际重要科技赛事中夺冠。

担任北京图象图形学学会理事,国际知名期刊《Artificial Intelligence Advances》、《IET Computer Vision》编委,《Pattern Recognition Letters》、《Electronics》特刊客座编辑,VALSE资深领域主席,ACM Multimedia 2021分论坛主席,CICAI 2022/2023领域主席,CCBR 2024论坛主席,中国人工智能学会/中国图象图形学学会高级会员,“挑战杯”大学生科技作品竞赛评委,中国人工智能大赛专家委委员等。

GitHub主页:https://zhaoj9014.github.io

学院主页:https://iopen.nwpu.edu.cn/info/1252/4626.htm

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
财政部拨款64.4亿助力汽车以旧换新,推动绿色出行财政部拨款64.4亿助力汽车以旧换新,推动绿色出行
上一篇
财政部拨款64.4亿助力汽车以旧换新,推动绿色出行
不同数据集有不同的Scaling law?而你可用一个压缩算法来预测它
下一篇
不同数据集有不同的Scaling law?而你可用一个压缩算法来预测它
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    191次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    191次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    190次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    195次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    212次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码