当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 替代MLP的KAN,被开源项目扩展到卷积了

替代MLP的KAN,被开源项目扩展到卷积了

来源:51CTO.COM 2024-05-23 19:00:28 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

一分耕耘,一分收获!既然都打开这篇《替代MLP的KAN,被开源项目扩展到卷积了》,就坚持看下去,学下去吧!本文主要会给大家讲到等等知识点,如果大家对本文有好的建议或者看到有不足之处,非常欢迎大家积极提出!在后续文章我会继续更新科技周边相关的内容,希望对大家都有所帮助!

本月初,来自 MIT 等机构的研究者提出了一种非常有潜力的 MLP 替代方法 ——KAN。

KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。

KAN 与 MLP 一样具有强大的数学基础,MLP 基于通用逼近定理,而 KAN 基于 Kolmogorov-Arnold 表示定理。

如下图所示,KAN 在边上具有激活函数,而 MLP 在节点上具有激活函数。KAN 似乎比 MLP 的参数效率更高,但每个 KAN 层比 MLP 层拥有更多的参数。 图片: [图1:示意图] 简要解释: KAN 是一种基于边的神经网络结构,每个节点都具有边的权重和激活函数。它通过边的传播来实现信息的传递和更新。 MLP 是一种基于节点的神经网络结构,每个节点都具有输入的

替代MLP的KAN,被开源项目扩展到卷积了

最近,有研究者将 KAN 创新框架的理念扩展到卷积神经网络,将卷积的经典线性变换改为每个像素中可学习的非线性激活函数,提出并开源 KAN 卷积(CKAN)。

替代MLP的KAN,被开源项目扩展到卷积了

项目地址:https://github.com/AntonioTepsich/Convolutional-KANs

KAN 卷积

KAN+卷积与卷积非常相似,但不是在内核和图像中相应像素之间应用点积,而是对每个元素应用可学习的非线性激活函数,然后将它们相加。KAN+卷积的内核当于 4 个输入和 1 个输出神经元的 KAN+线性层。对于每个输入 i,应用 ϕ_i 可学习函数,该卷积步骤的结果像素是 ϕ_i (x_i) 的总和。

替代MLP的KAN,被开源项目扩展到卷积了

KAN 卷积中的参数

假设有一个 KxK 内核,对于该矩阵的每个元素,都有一个 ϕ,其参数计数为:gridsize + 1,ϕ 定义为:

替代MLP的KAN,被开源项目扩展到卷积了

这为激活函数 b 提供了更多的可表达性,线性层的参数计数为 gridsize + 2。因此,KAN 卷积总共有 K^2(gridsize + 2) 个参数,而普通卷积只有 K^2。

初步评估

作者测试过的不同架构有:

  • 连接到 KAN 线性层的 KAN 卷积层(KKAN)
  • 与 MLP 相连的 KAN 卷积层(CKAN)
  • 在卷积之间进行批量归一化的 CKAN (CKAN_BN)
  • ConvNet(连接到 MLP 的经典卷积)(ConvNet)
  • 简单 MLP

替代MLP的KAN,被开源项目扩展到卷积了

作者表示,KAN 卷积的实现是一个很有前景的想法,尽管它仍处于早期阶段。他们进行了一些初步实验,以评估 KAN 卷积的性能。

值得注意的是,之所以公布这些「初步」结果,是因为他们希望尽快向外界介绍这一想法,推动社区更广泛的研究。

替代MLP的KAN,被开源项目扩展到卷积了

卷积层中列表每个元素都包含卷积数和相应的内核大小。

基于 28x28 MNIST 数据集,可以观察到 KANConv & MLP 模型与 ConvNet(大)相比达到了可接受的准确度。然而,不同之处在于 KANConv & MLP 所需的参数数量是标准 ConvNet 所需的参数数量的 7 倍。此外,KKAN 的准确率比 ConvNet Medium 低 0.04,而参数数量(94k 对 157k)几乎只有 ConvNet Medium 的一半,这显示了该架构的潜力。我们还需要在更多的数据集上进行实验,才能对此得出结论。

在接下来的几天和几周里,作者还将彻底调整模型和用于比较的模型的超参数。虽然已经尝试了一些超参数和架构的变化,但这只是启发式的,并没有采用任何精确的方法。由于计算能力和时间的原因,他们还没有使用大型或更复杂的数据集,并正在努力解决这个问题。

未来,作者将在更复杂的数据集上进行实验,这意味着 KANS 的参数量将会增加,因为需要实现更多的 KAN 卷积层。

结论

目前,与传统卷积网络相比,作者表示并没有看到 KAN 卷积网络的性能有显著提高。他们分析认为,这是由于使用的是简单数据集和模型,与尝试过的最佳架构(ConvNet Big,基于规模因素,这种比较是不公平的)相比,该架构的优势在于它对参数的要求要少得多。

在 2 个相同的卷积层和 KAN 卷积层与最后连接的相同 MLP 之间进行的比较显示,经典方法略胜一筹,准确率提高了 0.06,而 KAN 卷积层和 KAN 线性层的参数数量几乎只有经典方法的一半,准确率却降低了 0.04。

作者表示,随着模型和数据集复杂度的增加,KAN 卷积网络的性能应该会有所提高。同时,随着输入维数的增加,模型的参数数量也会增长得更快。

本篇关于《替代MLP的KAN,被开源项目扩展到卷积了》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
自动驾驶第一性之纯视觉静态重建自动驾驶第一性之纯视觉静态重建
上一篇
自动驾驶第一性之纯视觉静态重建
HuggingFace教你怎样做出SOTA视觉模型
下一篇
HuggingFace教你怎样做出SOTA视觉模型
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3207次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3421次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3450次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4558次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3828次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码