当前位置:首页 > 文章列表 > 数据库 > Redis > Redis数据库常见的键值设计有哪些

Redis数据库常见的键值设计有哪些

来源:亿速云 2024-04-30 19:36:44 0浏览 收藏

在数据库实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《Redis数据库常见的键值设计有哪些》,聊聊,希望可以帮助到正在努力赚钱的你。

  用户登录系统

  记录用户登录信息的一个系统,我们简化业务后只留下一张表。

  关系型数据库的设计

  mysql>select*fromlogin;

  +---------+----------------+-------------+---------------------+

  |user_id|name|login_times|last_login_time|

  +---------+----------------+-------------+---------------------+

  |1|kenthompson|5|2011-01-0100:00:00|

  |2|dennisritchie|1|2011-02-0100:00:00|

  |3|JoeArmstrong|2|2011-03-0100:00:00|

  +---------+----------------+-------------+---------------------+

  user_id表的主键,name表示用户名,login_times表示该用户的登录次数,每次用户登录后,login_times会自增,而last_login_time更新为当前时间。

  REDIS的设计

  关系型数据转化为KV数据库,我的方法如下:

  key表名:主键值:列名

  value列值

  一般使用冒号做分割符,这是不成文的规矩。比如在php-adminforredis系统里,就是默认以冒号分割,于是user:1user:2等key会分成一组。于是以上的关系数据转化成kv数据后记录如下:

  Setlogin:1:login_times5

  Setlogin:2:login_times1

  Setlogin:3:login_times2

  Setlogin:1:last_login_time2011-1-1

  Setlogin:2:last_login_time2011-2-1

  Setlogin:3:last_login_time2011-3-1

  setlogin:1:name”kenthompson“

  setlogin:2:name“dennisritchie”

  setlogin:3:name”JoeArmstrong“

  这样在已知主键的情况下,通过get、set就可以获得或者修改用户的登录次数和最后登录时间和姓名。

  一般用户是无法知道自己的id的,只知道自己的用户名,所以还必须有一个从name到id的映射关系,这里的设计与上面的有所不同。

  set"login:kenthompson:id"1

  set"login:dennisritchie:id"2

  set"login:JoeArmstrong:id"3

  这样每次用户登录的时候业务逻辑如下(python版),r是redis对象,name是已经获知的用户名。

  #获得用户的id

  uid=r.get("login:%s:id"%name)

  #自增用户的登录次数

  ret=r.incr("login:%s:login_times"%uid)

  #更新该用户的最后登录时间

  ret=r.set("login:%s:last_login_time"%uid,datetime.datetime.now())

  如果需求仅仅是已知id,更新或者获取某个用户的最后登录时间,登录次数,关系型和kv数据库无啥区别。一个通过btreepk,一个通过hash,效果都很好。

  假设有如下需求,查找最近登录的N个用户。开发人员看看,还是比较简单的,一个sql搞定。

  select*fromloginorderbylast_login_timedesclimitN

  DBA了解需求后,考虑到以后表如果比较大,所以在last_login_time上建个索引。执行计划从索引leafblock的最右边开始访问N条记录,再回表N次,效果很好。

  有哪些常见Redis数据库键值的设计

  过了两天,又来一个需求,需要知道登录次数最多的人是谁。同样的关系型如何处理?DEV说简单

  select*fromloginorderbylogin_timesdesclimitN

  DBA一看,又要在login_time上建立一个索引。有没有觉得有点问题呢,表上每个字段上都有素引。

  关系型数据库的数据存储的的不灵活是问题的源头,数据仅有一种储存方法,那就是按行排列的堆表。统一的数据结构意味着你必须使用索引来改变sql的访问路径来快速访问某个列的,而访问路径的增加又意味着你必须使用统计信息来辅助,于是一大堆的问题就出现了。

  没有索引,没有统计计划,没有执行计划,这就是kv数据库。

  redis里如何满足以上的需求呢?对于求最新的N条数据的需求,链表的后进后出的特点非常适合。我们在上面的登录代码之后添加一段代码,维护一个登录的链表,控制他的长度,使得里面永远保存的是最近的N个登录用户。

  #把当前登录人添加到链表里

  ret=r.lpush("login:last_login_times",uid)

  #保持链表只有N位

  ret=redis.ltrim("login:last_login_times",0,N-1)

  这样需要获得最新登录人的id,如下的代码即可

  last_login_list=r.lrange("login:last_login_times",0,N-1)

  另外,求登录次数最多的人,对于排序,积分榜这类需求,sortedset非常的适合,我们把用户和登录次数统一存储在一个sortedset里。

  zaddlogin:login_times51

  zaddlogin:login_times12

  zaddlogin:login_times23

  这样假如某个用户登录,额外维护一个sortedset,代码如此

  #对该用户的登录次数自增1

  ret=r.zincrby("login:login_times",1,uid)

  那么如何获得登录次数最多的用户呢,逆序排列取的排名第N的用户即可

  ret=r.zrevrange("login:login_times",0,N-1)

  可以看出,DEV需要添加2行代码,而DBA不需要考虑索引什么的。

  TAG系统

  tag在互联网应用里尤其多见,如果以传统的关系型数据库来设计有点不伦不类。我们以查找书的例子来看看redis在这方面的优势。

  关系型数据库的设计

  两张表,一张book的明细,一张tag表,表示每本的tag,一本书存在多个tag。

  mysql>select*frombook;

  +------+-------------------------------+----------------+

  |id|name|author|

  +------+-------------------------------+----------------+

  |1|TheRubyProgrammingLanguage|MarkPilgrim|

  |1|Rubyonrail|DavidFlanagan|

  |1|ProgrammingErlang|JoeArmstrong|

  +------+-------------------------------+----------------+

  mysql>select*fromtag;

  +---------+---------+

  |tagname|book_id|

  +---------+---------+

  |ruby|1|

  |ruby|2|

  |web|2|

  |erlang|3|

  +---------+---------+

  假如有如此需求,查找即是ruby又是web方面的书籍,如果以关系型数据库会怎么处理?

  selectb.name,b.authorfromtagt1,tagt2,bookb

  wheret1.tagname='web'andt2.tagname='ruby'andt1.book_id=t2.book_idandb.id=t1.book_id

  tag表自关联2次再与book关联,这个sql还是比较复杂的,如果要求即ruby,但不是web方面的书籍呢?

  关系型数据其实并不太适合这些集合操作。

  REDIS的设计

  首先book的数据肯定要存储的,和上面一样。

  setbook:1:name”TheRubyProgrammingLanguage”

  Setbook:2:name”Rubyonrail”

  Setbook:3:name”ProgrammingErlang”

  setbook:1:author”MarkPilgrim”

  Setbook:2:author”DavidFlanagan”

  Setbook:3:author”JoeArmstrong”

  tag表我们使用集合来存储数据,因为集合擅长求交集、并集

  saddtag:ruby1

  saddtag:ruby2

  saddtag:web2

  saddtag:erlang3

  那么,即属于ruby又属于web的书?

  inter_list=redis.sinter("tag.web","tag:ruby")

  即属于ruby,但不属于web的书?

  inter_list=redis.sdiff("tag.ruby","tag:web")

  属于ruby和属于web的书的合集?

  inter_list=redis.sunion("tag.ruby","tag:web")

  简单到不行阿。

  从以上2个例子可以看出在某些场景里,关系型数据库是不太适合的,你可能能够设计出满足需求的系统,但总是感觉的怪怪的,有种生搬硬套的感觉。

  尤其登录系统这个例子,频繁的为业务建立索引。放在一个复杂的系统里,ddl(创建索引)有可能改变执行计划。导致其它的sql采用不同的执行计划,业务复杂的老系统,这个问题是很难预估的,sql千奇百怪。要求DBA对这个系统里所有的sql都了解,这点太难了。这个问题在oracle里尤其严重,每个DBA估计都碰到过。对于MySQL这类系统,ddl又不方便(虽然现在有onlineddl的方法)。碰到大表,DBA凌晨爬起来在业务低峰期操作,这事我没少干过。而这种需求放到redis里就很好处理,DBA仅仅对容量进行预估即可。

终于介绍完啦!小伙伴们,这篇关于《Redis数据库常见的键值设计有哪些》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布数据库相关知识,快来关注吧!

版本声明
本文转载于:亿速云 如有侵犯,请联系study_golang@163.com删除
CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式
上一篇
CVPR 2024 | 跳舞时飞扬的裙摆,AI也能高度还原了,南洋理工提出动态人体渲染新范式
苹果CEO库克重申中国市场重要性,计划加大投资力度
下一篇
苹果CEO库克重申中国市场重要性,计划加大投资力度
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    20次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    29次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    35次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    43次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码