当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

来源:机器之心 2024-04-30 16:27:15 0浏览 收藏

小伙伴们有没有觉得学习科技周边很有意思?有意思就对了!今天就给大家带来《CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务》,以下内容将会涉及到,若是在学习中对其中部分知识点有疑问,或许看了本文就能帮到你!

CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

我们网站的AIxiv专栏是关于学术和技术内容的栏目。过去几年来,我们网站的AIxiv专栏已经收到超过2000篇内容,覆盖全球各大高校与企业的顶级实验室,有助于推进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或联系报道。投稿邮箱为liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。


来自香港科技大学,清华大学的研究者提出了「GenN2N」,一个统一的生成式 NeRF-to-NeRF 转换框架,适用于各种 NeRF 转换任务,例如文字驱动的 NeRF 编辑、着色、超分辨率、修复等,性能均表现极其出色!CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

  • 论文地址:https://arxiv.org/abs/2404.02788
  • 论文主页:https://xiangyueliu.github.io/GenN2N/
  • Github 地址:https://github.com/Lxiangyue/GenN2N
  • 论文标题:GenN2N: Generative NeRF2NeRF Translation

近年来,神经辐射场(NeRF)因其紧凑、高质量、多功能性在三维重建、三维生成和新视角合成领域引起了广泛关注。然而,一旦创建了 NeRF 场景,这些方法通常缺乏对生成几何和外观的进一步控制。因此,NeRF 编辑(NeRF Editing)最近成为了一个值得关注的研究重点。

目前的 NeRF 编辑方法通常是针对特定任务的,例如 NeRF 的文本驱动编辑、超分辨率、修复和着色。这些方法需要大量的特定任务领域知识。而在 2D 图像编辑领域,开发通用的图像到图像(Image-to-image)转换方法成为一种趋势,例如利用 2D 生成模型 Stable Difussion 支持多功能的图像编辑。因此,我们提出了利用基础的 2D 生成模型进行通用的 NeRF 编辑。

随之而来的挑战是 NeRF 和 2D 图像之间的表示差距,尤其是图像编辑器通常会为不同视角生成多种不一致的编辑。最近的一种基于文本的 NeRF 编辑方法 Instruct-NeRF2NeRF 对此进行了探究。其采用 “渲染 - 编辑 - 聚合” 的流程,通过逐步渲染多视角图像、编辑这些图像,将编辑图像聚合到 NeRF 中逐步更新 NeRF 场景。然而这种编辑方法,针对特定的编辑需求,经过大量的优化,只能生成一种特定编辑的结果,如果用户不满意则需要反复迭代尝试。

因此,我们提出了「GenN2N」,一种适用于多种 NeRF 编辑任务的 NeRF-to-NeRF 通用框架,其核心在于用生成的方式来刻画编辑过程多解性,使其可以借助生成式编辑轻松产生大量符合要求的编辑结果供用户挑选。

在 GenN2N 的核心部分,1)引入了 3D VAE-GAN 的生成式框架,使用 VAE 表征整个编辑空间,来学习与一组输入的 2D 编辑图像对应的所有可能的 3D NeRF 编辑分布,并用 GAN 为编辑 NeRF 的不同视图提供合理的监督,确保编辑结果的真实性,2)使用对比学习解耦编辑内容和视角,确保不同视角间的编辑内容一致性,3)在推理时,用户简单地从条件生成模型中随机地采样出多个编辑码,就可以生成与编辑目标对应的各种 3D 编辑结果。

相比于各种 NeRF 编辑任务的 SOTA 方法(ICCV2023 Oral 等),GenN2N 在编辑质量、多样性、效率等方面均优于已有方法。

方法介绍

我们首先进行 2D 图像编辑,然后将这些 2D 编辑提升到 3D NeRF 来实现生成式的 NeRF-to-NeRF 的转换。

CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务

A. 隐式蒸馏(Latent Distill)

我们用 Latent Distill Module 作为 VAE 的 encoder,为每张编辑图像学习一个隐式的编辑码,在 NeRF-to-NeRF 转换中通过此编辑码控制生成的内容。所有编辑码在 KL loss 的约束下服从一个良好的正态分布,以便更好地采样。为了解耦编辑内容和视角,我们精心设计了对比学习,鼓励相同编辑风格视角不同的图片的编辑码相近,不同编辑风格但视角相同的图片的编辑码互相远离。

B.NeRF-to-NeRF 的转换(Translated NeRF)

我们用 NeRF-to-NeRF Translation 作为 VAE 的 decoder,其以编辑码作为输入,将原始的 NeRF 修改为一个转换 NeRF。我们在原 NeRF 网络隐藏层之间添加了残差层,这些残差层以编辑码作为输入来调制隐藏层神经元,使得转换 NeRF 既能够保留原本 NeRF 的信息,又可以根据编辑码来控制转换 3D 内容。同时,NeRF-to-NeRF Translation 也作为生成器参与生成对抗训练。通过生成而非优化的方式,使得我们可以一次性得到多种转换结果,显著提升了 NeRF 转换效率和结果多样性。

C. 条件判别器(Conditional Discriminator)

转换 NeRF 的渲染图片构成了需要判别的生成空间,这些图片的编辑风格、渲染视角各异,导致生成空间非常复杂。因此我们提供一个 condition 作为判别器的额外信息。具体而言,判别器在鉴别生成器的渲染图片CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务(负样本)或训练数据中的编辑图片CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务(正样本)时,我们都从训练数据中再挑选一张相同视角的编辑图片CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务作为条件,这使得判别器在鉴别正负样本时不会受到视角因素的干扰。

D. 推理(Inference)

在 GenN2N 优化后,用户可以从正态分布中随机采样出编辑码,输入转换 NeRF 即可生成出编辑后的高质量、多视角一致性的 3D NeRF 场景。

实验

我们在多种 NeRF-to-NeRF 任务上进行了大量的实验,包括 NeRF 文本驱动编辑、着色、超分辨率、修复等。实验结果展示了 GenN2N 卓越的编辑质量、多视角一致性、生成的多样性和编辑效率。

A. 基于文本的 NeRF 编辑CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务B.NeRF 着色 CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务C.NeRF 超分辨率 CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务D.NeRF 修复 CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务
对比实验

我们的方法与各种特定 NeRF 任务的 SOTA 方法进行了定性和定量对比(包括文本驱动编辑、着色、超分辨率和修复等)。结果表明,GenN2N 作为一个通用框架,其表现与特定任务 SOTA 相当或者更好,同时编辑结果具有更强的多样性(如下是 GenN2N 与 Instruct-NeRF2NeRF 在基于文本的 NeRF 编辑任务上的对比)。

A. 基于文本的 NeRF 编辑CVPR 2024高分论文:全新生成式编辑框架GenN2N,统一NeRF转换任务
了解更多实验、方法内容,请参考论文主页。

团队介绍

该论文来自香港科技大学谭平团队、清华大学 3DVICI Lab、上海人工智能实验室和上海期智研究院,论文的作者为香港科技大学学生刘襄阅,清华大学学生薛晗,香港科技大学学生罗堃铭,指导老师为清华大学弋力老师和香港科技大学谭平老师。

今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
CVPR 2024 | 擅长处理复杂场景和语言表达,清华&博世提出全新实例分割网络架构MagNetCVPR 2024 | 擅长处理复杂场景和语言表达,清华&博世提出全新实例分割网络架构MagNet
上一篇
CVPR 2024 | 擅长处理复杂场景和语言表达,清华&博世提出全新实例分割网络架构MagNet
golang mongo-db 事务无法创建命名空间
下一篇
golang mongo-db 事务无法创建命名空间
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3180次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3391次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3420次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4526次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3800次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码