当前位置:首页 > 文章列表 > 文章 > java教程 > Java中的布隆过滤器怎么应用

Java中的布隆过滤器怎么应用

来源:亿速云 2024-04-30 13:00:27 0浏览 收藏

哈喽!今天心血来潮给大家带来了《Java中的布隆过滤器怎么应用》,想必大家应该对文章都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习文章,千万别错过这篇文章~希望能帮助到你!

什么是布隆过滤器

布隆过滤器(Bloom Filter)是一种空间效率非常高的随机数据结构,它利用位数组(BitSet)表示一个集合,并通过一定数量的哈希函数将元素映射为位数组中的位置,用于检查一个元素是否属于这个集合。

实现的核心思想

对于一个元素,通过多个哈希函数生成多个哈希值,将对应的位在位数组中设为 1,若多个哈希值对应的位都为 1,则认为该元素可能在集合中;若至少有一个哈希值对应的位为 0,则该元素一定不在集合中。这种方法可以在较小的空间中实现高效的查找,但可能存在误判率(false positive)。

怎么理解

一个典型的布隆过滤器包含三个参数: 位数组的大小(即存储元素的个数); 哈希函数的个数; 填充因子(即误判率),即将元素数量与位数组大小的比值。

Java中的布隆过滤器怎么应用

如上图所示: 布隆过滤器的基本操作流程,包括初始化位数组和哈希函数、插入元素、检查元素是否在集合中等。其中,每个元素都会被多个哈希函数映射到位数组中的多个位置,而在检查元素是否在集合中时,需要确保所有对应的位都被设置为 1,才会认为该元素可能在集合中。

典型应用场景

垃圾邮件过滤: 将所有的黑名单邮件对应的哈希值在布隆过滤器中对应的位置设为 1,对于每一封新邮件,将其哈希值在布隆过滤器中对应的位置检查是否都为 1,若是,则认为该邮件是垃圾邮件,否则可能是正常邮件;

URL 去重: 将已经抓取的 URL 对应的哈希值在布隆过滤器中对应的位置设为 1,对于每一条新的 URL,将其哈希值在布隆过滤器中对应的位置检查是否都为 1,若是,则认为该 URL 已经抓取过,否则需要进行抓取;

缓存击穿: 将缓存中存在的所有数据对应的哈希值在布隆过滤器中对应的位置设为 1,对于每一个查询的键值,将其哈希值在布隆过滤器中对应的位置检查是否都为 1,若是,则认为该键值存在于缓存中,否则需要从数据库中查询并将其添加到缓存中。

需要注意的是,布隆过滤器的误判率会随着位数组大小的增加而减小,但同时也会增加内存开销和计算时间。 为了方便理解布隆过滤器,下面用java代码实现一个简单的布隆过滤器:

import java.util.BitSet;

import java.util.Random;

 

public class BloomFilter {


  private BitSet bitSet;           // 位集,用于存储哈希值

  private int bitSetSize;         // 位集大小

  private int numHashFunctions;   // 哈希函数数量

  private Random random;          // 随机数生成器


  // 构造函数,根据期望元素数量和错误率计算位集大小和哈希函数数量

  public BloomFilter(int expectedNumItems, double falsePositiveRate) {

    this.bitSetSize = optimalBitSetSize(expectedNumItems, falsePositiveRate);

    this.numHashFunctions = optimalNumHashFunctions(expectedNumItems, bitSetSize);

    this.bitSet = new BitSet(bitSetSize);

    this.random = new Random();

  }


  // 根据期望元素数量和错误率计算最佳位集大小

  private int optimalBitSetSize(int expectedNumItems, double falsePositiveRate) {

    int bitSetSize = (int) Math.ceil(expectedNumItems * (-Math.log(falsePositiveRate) / Math.pow(Math.log(2), 2)));

    return bitSetSize;

  }

 
  // 根据期望元素数量和位集大小计算最佳哈希函数数量

  private int optimalNumHashFunctions(int expectedNumItems, int bitSetSize) {

    int numHashFunctions = (int) Math.ceil((bitSetSize / expectedNumItems) * Math.log(2));

    return numHashFunctions;

  }

 
  // 添加元素到布隆过滤器中

  public void add(String item) {

    // 计算哈希值

    int[] hashes = createHashes(item.getBytes(), numHashFunctions);

    // 将哈希值对应的位设置为 true

    for (int hash : hashes) {

      bitSet.set(Math.abs(hash % bitSetSize), true);

    }

  }


  // 检查元素是否存在于布隆过滤器中

  public boolean contains(String item) {

    // 计算哈希值

    int[] hashes = createHashes(item.getBytes(), numHashFunctions);

    // 检查哈希值对应的位是否都为 true

    for (int hash : hashes) {

      if (!bitSet.get(Math.abs(hash % bitSetSize))) {

        return false;

      }

    }

    return true;

  }


  // 计算给定数据的哈希值

  private int[] createHashes(byte[] data, int numHashes) {

    int[] hashes = new int[numHashes];

    int hash2 = Math.abs(random.nextInt());

    int hash3 = Math.abs(random.nextInt());

    for (int i = 0; i < numHashes; i++) {

      // 使用两个随机哈希函数计算哈希值

      hashes[i] = Math.abs((hash2 * i) + (hash3 * i) + i) % data.length;

    }

    return hashes;

  }

}

终于介绍完啦!小伙伴们,这篇关于《Java中的布隆过滤器怎么应用》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

版本声明
本文转载于:亿速云 如有侵犯,请联系study_golang@163.com删除
win10电脑运行速度慢怎么处理_win10电脑运行速度慢如何解决win10电脑运行速度慢怎么处理_win10电脑运行速度慢如何解决
上一篇
win10电脑运行速度慢怎么处理_win10电脑运行速度慢如何解决
小米14系列手机销量飙升 市场激活量达470万台
下一篇
小米14系列手机销量飙升 市场激活量达470万台
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    30次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    45次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    40次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    53次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    43次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码