单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
FP8和更低的浮点数量化精度,不再是H100的“专利”了!
老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。
测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。
在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。
这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。
一名机器学习研究人员看了后表示,微软的这项研究简直可以用crazy来形容。
表情包也第一时间上线,be like:
英伟达:只有H100支持FP8。
微软:Fine,我自己搞定。
那么,这个框架到底能实现什么样的效果,背后又采用了什么样的技术呢?
用FP6跑Llama,单卡比双卡还快
在A100上使用FP6精度,带来的是内核级的性能提升。
研究人员选取了不同大小的Llama模型和OPT模型之中的线性层,在NVIDIA A100-40GB GPU平台上,使用CUDA 11.8进行了测试。
结果相比于英伟达官方的cuBLAS(W16A16)和TensorRT-LLM(W8A16),TC-FPx(W6A16)速度提升的最大值分别是2.6倍和1.9倍。
相比于4bit的BitsandBytes(W4A16)方法,TC-FPx的最大速度提升则是达到了8.9倍。
(W和A分别代表权重量化位宽和激活量化位宽)
△归一化数据,以cuBLAS结果为1
同时,TC-FPx内核还减少了对DRAM内存的访问,并提高了DRAM带宽利用率和Tensor Cores利用率,以及ALU和FMA单元的利用率。
在TC-FPx基础之上设计的端到端推理框架FP6-LLM,也给大模型带来了显著的性能提高。
以Llama-70B为例,用FP6-LLM在单卡上的运行吞吐量,比FP16在双卡上还要高出2.65倍,在16以下的批大小中的延迟也低于FP16。
而对于参数量小一些的模型OPT-30B(FP16也使用单卡),FP6-LLM同样带来了明显的吞吐量提升和延迟降低。
而且单卡FP16在这种条件下最多支持的批大小只有4,FP6-LLM却可以在批大小为16的情况下正常运行。
那么,微软团队是怎样实现在A100上运行FP16量化的呢?
重新设计内核方案
为了实现对包括6bit在内精度的支持,TC-FPx团队设计了一个统一的内核方案,可以支持不同位宽的量化权重。
相比于传统的双内核方法,TC-FPx通过将去量化和矩阵乘法融合在单个内核中,减少了内存访问次数,提高了性能。
实现低精度量化的核心奥义则是通过去量化方式,将FP6精度的数据“伪装”成FP16,然后按照FP16的格式交给GPU进行运算。
同时团队还利用了位级预打包技术,解决GPU内存系统对非2的幂次位宽(如6-bit)不友好的问题。
具体来说,位级预打包是在模型推理之前对权重数据进行重新组织,包括将6-bit量化的权重重新排列,以便它们能够以GPU内存系统友好的方式进行访问。
此外,由于GPU内存系统通常以32位或64位的块进行数据访问,位级预打包技术将还会6-bit权重打包,使得它们能够以这些对齐的块的形式存储和访问。
预打包完成后,研究团队使用SIMT核心的并行处理能力,对寄存器中的FP6权重执行并行去量化,生成FP16格式的权重。
去量化后的FP16权重在寄存器中被重构,然后送入Tensor Core,使用重构后的FP16权重执行矩阵乘法运算,完成线性层的计算。
在此过程中,团队利用了SMIT核心的位级并行性,提高了整个去量化过程的效率。
而为了权重重构任务能够并行运行,团队还使用了一种并行权重拼接技术。
具体来说,每个权重被分割成几个部分,每个部分的位宽是2的幂次(如把6分割成2+4或4+2)。
在去量化之前,权重首先从共享内存加载到寄存器中。由于每个权重被分割成多个部分,需要在运行时在寄存器级别重构完整的权重。
为了减少运行时的开销,TC-FPx提出了一种并行提取和拼接权重的方法。这种方法使用两组寄存器来存储32个FP6权重的片段,并行地重构这些权重。
同时,为了并行提取和拼接权重,需要确保初始数据布局满足特定的顺序要求,因此TC-FPx通过在运行前对权重片段进行重排。
此外,TC-FPx还设计了一个软件流水线,将去量化步骤与Tensor Core的矩阵乘法操作融合在一起,通过指令级并行性提高了整体的执行效率。
论文地址:https://arxiv.org/abs/2401.14112
文中关于开源,模型,数据的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《单卡跑Llama 70B快过双卡,微软硬生生把FP6搞到了A100里 | 开源》文章吧,也可关注golang学习网公众号了解相关技术文章。

- 上一篇
- 牛津大学最新!Mickey:3D中的2D图像匹配SOTA!(CVPR\'24)

- 下一篇
- 华为nova 12系列手机大卖 占据一季度出货量三分之一份额
-
- 科技周边 · 人工智能 | 1小时前 |
- 问界M8快报:MAX+版最火,BAL车主热捧
- 335浏览 收藏
-
- 科技周边 · 人工智能 | 4小时前 |
- 港大与Adobe联手推出PixelFlow图像生成模型
- 135浏览 收藏
-
- 科技周边 · 人工智能 | 6小时前 | 摩尔线程 招聘诈骗 @mthreads.com 官方客服 法律责任
- 摩尔线程重磅声明发布
- 406浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- 玛莎拉蒂GT2Stradale国内首秀售414.5万
- 226浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- 美股反弹艰难,三大指数涨跌不一,英伟达跌3%
- 301浏览 收藏
-
- 科技周边 · 人工智能 | 11小时前 |
- 本田烨品牌GT车型上海车展首发亮相
- 358浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 28次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 42次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 39次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 51次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 42次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览