当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

来源:51CTO.COM 2024-04-28 12:27:17 0浏览 收藏

各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题《谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择》,很明显是关于科技周边的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

而且测试并不是在JAX性能表现最好的TPU上完成的。

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

但未来,也许有更多的大模型会基于JAX平台进行训练和运行。

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

模型

最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras 2进行了基准测试。

首先,他们为生成式和非生成式人工智能任务选择了一组主流的计算机视觉和自然语言处理模型:

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

对于模型的Keras版本,其采用了KerasCV和KerasNLP中已有的实现进行构建。而对于原生的PyTorch版本,则选择了网络上最流行的几个选项:

- 来自HuggingFace Transformers的BERT、Gemma、Mistral

- 来自HuggingFace Diffusers的StableDiffusion

- 来自Meta的SegmentAnything

他们将这组模型称作「Native PyTorch」,以便与使用PyTorch后端的Keras 3版本进行区分。

他们对所有基准测试都使用了合成数据,并在所有LLM训练和推理中使用了bfloat16精度,同时在所有LLM训练中使用了LoRA(微调)。

根据PyTorch团队的建议,他们在原生PyTorch实现中使用了torch.compile(model, mode="reduce-overhead")(由于不兼容,Gemma和Mistral训练除外)。

为了衡量开箱即用的性能,他们使用高级API(例如HuggingFace的Trainer()、标准PyTorch训练循环和Keras model.fit()),并尽可能减少配置。

硬件配置

所有基准测试均使用Google Cloud Compute Engine进行,配置为:一块拥有40GB显存的NVIDIA A100 GPU、12个虚拟CPU和85GB的主机内存。

基准测试结果

表2显示了基准测试结果(以步/毫秒为单位)。每步都涉及对单个数据批次进行训练或预测。

结果是100步的平均值,但排除了第一个步,因为第一步包括了模型创建和编译,这会额外花费时间。

为了确保比较的公平性,对于相同的模型和任务(不论是训练还是推理)都使用相同的批大小。

然而,对于不同的模型和任务,由于它们的规模和架构有所不同,可根据需要调整数据批大小,从而避免因过大而导致内存溢出,或是批过小而导致GPU使用不足。

过小的批大小也会使PyTorch看起来较慢,因为会增加Python的开销。

对于大型语言模型(Gemma和Mistral),测试时也使用了相同的批处理大小,因为它们是相同类型的模型,具有类似数量的参数(7B)。

考虑到用户对单批文本生成的需求,也对批大小为1的文本生成情况进行了基准测试。

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

关键发现

发现1

不存在「最优」后端。

Keras的三种后端各展所长,重要的是,就性能而言,并没有哪一个后端能够始终胜出。

选择哪个后端最快,往往取决于模型的架构。

这一点突出了选择不同框架以追求最佳性能的重要性。Keras 3可以帮助轻松切换后端,以便为模型找到最合适的选择。

发现2

Keras 3的性能普遍超过PyTorch的标准实现。

相对于原生PyTorch,Keras 3在吞吐量(步/毫秒)上有明显的提升。

特别是,在10个测试任务中,有5个的速度提升超过了50%。其中,最高更是达到了290%。

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

如果是100%,意味着Keras 3的速度是PyTorch的2倍;如果是0%,则表示两者性能相当

发现3

Keras 3提供一流的「开箱即用」性能。

也就是,所有参与测试的Keras模型都未进行过任何优化。相比之下,使用原生PyTorch实现时,通常需要用户自行进行更多性能优化。

除了上面分享的数据,测试中还注意到在HuggingFace Diffusers的StableDiffusion推理功能上,从版本0.25.0升级到0.3.0时,性能提升超过了100%。

同样,在HuggingFace Transformers中,Gemma从4.38.1版本升级至4.38.2版本也显著提高了性能。

这些性能的提升凸显了HuggingFace在性能优化方面的专注和努力。

对于一些手动优化较少的模型,如SegmentAnything,则使用了研究作者提供的实现。在这种情况下,与Keras相比,性能差距比大多数其他模型更大。

这表明,Keras能够提供卓越的开箱即用性能,用户无需深入了解所有优化技巧即可享受到快速的模型运行速度。

发现4

Keras 3的表现始终优于Keras 2。

例如,SegmentAnything的推理速度提升了惊人的380%,StableDiffusion的训练处理速度提升了150%以上,BERT的训练处理速度也提升了100%以上。

这主要是因为Keras 2在某些情况下直接使用了更多的TensorFlow融合操作,而这可能对于XLA的编译并不是最佳选择。

值得注意的是,即使仅升级到Keras 3并继续使用TensorFlow后端,也能显著提升性能。

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择

结论

框架的性能在很大程度上取决于具体使用的模型。

Keras 3能够帮助为任务选择最快的框架,这种选择几乎总能超越Keras 2和PyTorch实现。

更为重要的是,Keras 3模型无需进行复杂的底层优化,即可提供卓越的开箱即用性能。

今天关于《谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
PHP数组合并后,如何处理空数组?PHP数组合并后,如何处理空数组?
上一篇
PHP数组合并后,如何处理空数组?
适马全新24-70mm镜头即将面世 挑战索尼GMII光学性能
下一篇
适马全新24-70mm镜头即将面世 挑战索尼GMII光学性能
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    20次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    29次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    35次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    44次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    37次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码