当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Transformer本可以深谋远虑,但就是不做

Transformer本可以深谋远虑,但就是不做

来源:机器之心 2024-04-25 13:57:31 0浏览 收藏

小伙伴们对科技周边编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《Transformer本可以深谋远虑,但就是不做》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!

语言模型是否会规划未来 token?这篇论文给你答案。

「别让 Yann LeCun 看见了。」

Transformer本可以深谋远虑,但就是不做

Yann LeCun 表示太迟了,他已经看到了。今天要介绍的这篇 「LeCun 非要看」的论文探讨的问题是:Transformer 是深谋远虑的语言模型吗?当它在某个位置执行推理时,它会预先考虑后面的位置吗?

这项研究得出的结论是:Transformer 有能力这样做,但在实践中不会这样做。  

我们都知道,人类会思考而后言。十年的语言学研究表明:人类在使用语言时,内心会预测即将出现的语言输入、词或句子。

不同于人类,现在的语言模型在「说话」时会为每个 token 分配固定的计算量。那么我们不禁要问:语言模型会和人类一样预先性地思考吗?

根据最近的一些研究已经表明:可以通过探查语言模型的隐藏状态来预测下一 token。有趣的是,通过在模型隐藏状态上使用线性探针,可以在一定程度上预测模型在未来 token 上的输出,并且可以对未来输出进行可预测的修改。 近期的一些研究已经表明,可以通过探查语言模型的隐藏状态来预测下一 token。有趣的是,通过在模型隐藏状态上使用线性探针,可以在一定程度上预测模型在未来 token 上的输出,并且可以对未来输出进行可预测的修改。

这些发现表明在给定时间步骤的模型激活至少在一定程度上可以预测未来输出。

但是,我们还不清楚其原因:这只是数据的偶然属性,还是因为模型会刻意为未来时间步骤准备信息(但这会影响模型在当前位置的性能)?

为了解答这一问题,近日科罗拉多大学博尔德分校和康奈尔大学的三位研究者发布了一篇题为《语言模型是否会规划未来 token?》的论文。

Transformer本可以深谋远虑,但就是不做

论文标题:Do Language Models Plan for Future Tokens?

论文地址:https://arxiv.org/pdf/2404.00859.pdf  

研究概览

他们观察到,在训练期间的梯度既会为当前 token 位置的损失优化权重,也会为该序列后面的 token 进行优化。他们又进一步问:当前的 transformer 权重会以怎样的比例为当前 token 和未来 token 分配资源?

他们考虑了两种可能性:预缓存假设(pre-caching hypothesis)和面包屑假设(breadcrumbs hypothesis)。

Transformer本可以深谋远虑,但就是不做

预缓存假设是指 transformer 会在时间步骤 t 计算与当前时间步骤的推理任务无关但可能对未来时间步骤 t + τ 有用的特征,而面包屑假设是指与时间步骤 t 最相关的特征已经等同于将在时间步骤 t + τ 最有用的特征。

为了评估哪种假设是正确的,该团队提出了一种短视型训练方案(myopic training scheme),该方案不会将当前位置的损失的梯度传播给之前位置的隐藏状态。

对上述假设和方案的数学定义和理论描述请参阅原论文。

实验结果

为了了解语言模型是否可能直接实现预缓存,他们设计了一种合成场景,其中只能通过显式的预缓存完成任务。他们配置了一种任务,其中模型必须为下一 token 预先计算信息,否则就无法在一次单向通过中准确计算出正确答案。

Transformer本可以深谋远虑,但就是不做

                               该团队构建的合成数据集定义。

在这个合成场景中,该团队发现了明显的证据可以说明 transformer 可以学习预缓存。当基于 transformer 的序列模型必须预计算信息来最小化损失时,它们就会这样做。

之后,他们又探究了自然语言模型(预训练的 GPT-2 变体)是会展现出面包屑假设还是会展现出预缓存假设。他们的短视型训练方案实验表明在这种设置中,预缓存出现的情况少得多,因此结果更偏向于面包屑假设。

Transformer本可以深谋远虑,但就是不做

                                 基于 token 位置的原始 GPT-2 模型与短视型 GPT-2 模型的交叉熵损失及其差异。

Transformer本可以深谋远虑,但就是不做

                              GPT-2 通过原始和短视型训练获得的验证交叉熵损失。

于是该团队声称:在真实语言数据上,语言模型并不会在显著程度上准备用于未来的信息。相反,它们是计算对预测下一个 token 有用的特征 —— 事实证明这对未来的步骤也很有用。

Transformer本可以深谋远虑,但就是不做

该团队表示:「在语言数据中,我们观察到贪婪地针对下一 token 损失进行优化与确保未来预测性能之间并不存在显著的权衡。」

因此我们大概可以看出来,Transformer 能否深谋远虑的问题似乎本质上是一个数据问题。

Transformer本可以深谋远虑,但就是不做

可以想象,也许未来我们能通过合适的数据整理方法让语言模型具备人类一样预先思考的能力。

今天关于《Transformer本可以深谋远虑,但就是不做》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于理论的内容请关注golang学习网公众号!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
蔚来ET7新款车型路试谍照曝光,月灰银车色及内饰细节抢先看蔚来ET7新款车型路试谍照曝光,月灰银车色及内饰细节抢先看
上一篇
蔚来ET7新款车型路试谍照曝光,月灰银车色及内饰细节抢先看
抖音重点打击“售卖账号”“售卖好评卡”“恶意控评”三类水军行为
下一篇
抖音重点打击“售卖账号”“售卖好评卡”“恶意控评”三类水军行为
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    112次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    105次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    125次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    116次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    121次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码