当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五

来源:51CTO.COM 2024-04-25 09:30:36 0浏览 收藏

在IT行业这个发展更新速度很快的行业,只有不停止的学习,才不会被行业所淘汰。如果你是科技周边学习者,那么本文《大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五》就很适合你!本篇内容主要包括##content_title##,希望对大家的知识积累有所帮助,助力实战开发!

关于Llama 3,又有测试结果新鲜出炉——

大模型评测社区LMSYS发布了一份大模型排行榜单,Llama 3位列第五,英文单项与GPT-4并列第一。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

不同于其他Benchmark,这份榜单的依据是模型一对一battle,由全网测评者自行命题并打分。

最终,Llama 3取得了榜单中的第五名,排在前面的是GPT-4的三个不同版本,以及Claude 3超大杯Opus。

而在英文单项榜单中,Llama 3反超了Claude,与GPT-4打成了平手。

对于这一结果,Meta的首席科学家LeCun十分高兴,转发了推文并留下了一个“Nice”。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

PyTorch之父Soumith Chintala也激动地表示,这样的成果令人难以置信,对Meta感到骄傲。

Llama 3的400B版本还没出来,单靠70B参数就获得了第五名……
我还记得去年三月GPT-4发布的时候,达到与之相同的表现几乎是一件不可能的事。
……
现在AI的普及化实在是令人难以置信,我对Meta AI的同仁们做出这样的成功感到非常骄傲。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

那么,这份榜单具体展示了什么样的结果呢?

近90个模型对战75万轮

截至最新榜单发布,LMSYS共收集了近75万次大模型solo对战结果,涉及的模型达到了89款。

其中,Llama 3参与过的有1.27万次,GPT-4则有多个不同版本,最多的参与了6.8万次。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

下面这张图展示了部分热门模型的比拼次数和胜率,图中的两项指标都没有统计平局的次数。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

榜单方面,LMSYS分成了总榜和多个子榜单,GPT-4-Turbo位列第一,与之并列的是早一些的1106版本,以及Claude 3超大杯Opus。

另一个版本(0125)的GPT-4则位列其后,紧接着就是Llama 3了。

不过比较有意思的是,较新一些的0125,表现还不如老版本1106。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

而在英文单项榜单中,Llama 3的成绩直接和两款GPT-4打成了平手,还反超了0125版本。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

中文能力排行榜的第一名则由Claude 3 Opus和GPT-4-1106共享,Llama 3则已经排到了20名开外。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

除了语言能力之外,榜单中还设置了长文本和代码能力排名,Llama 3也都名列前茅。

不过,LMSYS的“游戏规则”又具体是什么样的呢?

人人都可参与的大模型评测

这是一个人人都可以参与的大模型测试,题目和评价标准,都由参与者自行决定。

而具体的“竞技”过程,又分成了battle和side-by-side两种模式。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

battle模式下,在测试界面输入好问题之后,系统会随机调用库中的两个模型,而测试者并不知道系统到底抽中了谁,界面中只显示“模型A”和“模型B”。

在模型输出答案后,测评人需要选择哪个更好,或者是平手,当然如果模型的表现都不符合预期,也有相应的选项。

只有在做出选择之后,模型的身份才会被揭开。

side-by-side则是由用户选择指定的模型来PK,其余测试流程与battle模式相同

不过,只有battle的匿名模式下的投票结果才会被统计,且在对话过程中模型不小心暴露身份就会导致结果失效。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

按照各个模型对其他模型的Win Rate,可以绘制出这样的图像:

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

△示意图,较早版本

而最终的排行榜,是利用Win Rate数据,通过Elo评价系统换算成分数得到的。

Elo评价系统是一种计算玩家相对技能水平的方法,由美国物理学教授Arpad Elo设计。

具体到LMSYS,在初始条件下,所有模型的评分(R)都被设定为1000,然后根据这样的公式计算出期待胜率(E)。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

随着测试的不断进行,会根据实际得分(S)对评分进行修正,S有1、0和0.5三种取值,分别对应获胜、失败和平手三种情况。

修正算法如下式所示,其中K为系数,需要测试者根据实际情况调整。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

最终将所有有效数据纳入计算后,就得到了模型的Elo评分。

不过实际操作过程中,LMSYS团队发现这种算法的稳定性存在不足,于是又采用了统计学方法进行了修正。

他们利用Bootstrap方法进行重复采样,得到了更稳定的结果,并估计了置信度区间。

最终修正后的Elo评分,就成了榜单中的排列依据。

One More Thing

Llama 3已经可以在大模型推理平台Groq(不是马斯克的Grok)上跑了。

这个平台的最大亮点就是“快”,之前用Mixtral模型跑出过每秒近500 token的速度。

跑起Llama 3,也是相当迅速,实测70B可以跑到每秒约300 Token,8B版本更是接近了800。

大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五图片

参考链接:
[1]https://lmsys.org/blog/2023-05-03-arena/
[2]https://chat.lmsys.org/?leaderboard
[3]https://twitter.com/lmsysorg/status/1782483699449332144

今天关于《大模型一对一战斗75万轮,GPT-4夺冠,Llama 3位列第五》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于GPT-4,版本,Llama 3的内容请关注golang学习网公众号!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
如何在 golang 中编码用于重定向的 http 查询参数如何在 golang 中编码用于重定向的 http 查询参数
上一篇
如何在 golang 中编码用于重定向的 http 查询参数
特斯拉大裁员风暴即将来临,数万人或将失业
下一篇
特斯拉大裁员风暴即将来临,数万人或将失业
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    96次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    89次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    107次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    98次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    98次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码