当前位置:首页 > 文章列表 > Golang > Go教程 > Go语言中的内存布局详解

Go语言中的内存布局详解

来源:脚本之家 2023-02-21 16:29:45 0浏览 收藏

在Golang实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《Go语言中的内存布局详解》,聊聊go语言内存,希望可以帮助到正在努力赚钱的你。

一、go语言内存布局

想象一下,你有一个如下的结构体。

代码如下:
type MyData struct {
        aByte   byte
        aShort  int16
        anInt32 int32
        aSlice  []byte
}

那么这个结构体究竟是什么呢? 从根本上说,它描述了如何在内存中布局数据。 这是什么意思?编译器又是如何展现出来呢? 我们来看一下。 首先让我们使用反射来检查结构中的字段。

二、反射之上

下面是一些使用反射来找出字段大小及其偏移量(它们相对于结构的开始位于内存中的位置)的代码。 反射可以告诉我们编译器是怎么看待类型(包括结构)的。

代码如下:
// First ask Go to give us some information about the MyData type
typ := reflect.TypeOf(MyData{})
fmt.Printf("Struct is %d bytes long\n", typ.Size())
// We can run through the fields in the structure in order
n := typ.NumField()
for i := 0; i         field := typ.Field(i)
        fmt.Printf("%s at offset %v, size=%d, align=%d\n",
            field.Name, field.Offset, field.Type.Size(),
            field.Type.Align())
 }

除了每个字段的偏移和大小,我还打印了每个字段的对齐方式,我稍后会解释。结果如下:

代码如下:
Struct is 32 bytes long
aByte at offset 0, size=1, align=1
aShort at offset 2, size=2, align=2
anInt32 at offset 4, size=4, align=4
aSlice at offset 8, size=24, align=8

aByte是我们结构体中的第一个字段,偏移量为0.它使用1字节的内存。

aShort是第二个字段。它使用2字节的内存。奇怪的是偏移量是2。这是为什么呢?答案是对齐, CPU更好地访问位于2字节(“2字节边界”)的倍数的地址处的2个字节,并访问位于4字节边界上的4个字节,直到CPU的自然整数大小,在现代CPU上是8字节(64位)。

在一些较旧的RISC CPU访问错误对齐的数字引起一个故障:在一些UNIX系统上,这将是一个SIGBUS,它会停止你的程序(或内核)。一些系统能够处理这些错误并修复错误:您的代码将运行,但会缓慢的运行,因为额外的代码将由操作系统运行以修复错误。我相信英特尔和ARM的CPU也只是处理芯片上的任何不对齐:也许我们将在以后的文章中测试这一点,以及任何性能的影响。

无论如何,对齐是Go编译器跳过一个字节放置字段aShort以便它位于2字节边界的原因。因为这样,我们可以将另一个字段放进结构体中,而不使它占用更大内存。这里是我们的结构的新版本,在aByte之后立即有一个新字段anotherByte。

代码如下:
type MyData struct {
       aByte       byte
       anotherByte byte
       aShort      int16
       anInt32     int32
       aSlice      []byte
}

我们再次运行反射代码,可以看到anotherByte正好在aByte和aShort之间的空闲空间。 它坐落在偏移1,aShort仍然在偏移2.现在可能是时候注意我之前提到的那个神秘对齐字段。 它告诉我们和Go编译器,这个字段需要如何对齐。

代码如下:
Struct is 32 bytes long
aByte at offset 0, size=1, align=1
anotherByte at offset 1, size=1, align=1
aShort at offset 2, size=2, align=2
anInt32 at offset 4, size=4, align=4
aSlice at offset 8, size=24, align=8

三、看看内存

然而我们的结构体在内存中到底是什么样子? 让我们看看我们能不能找到答案。 首先让我们构建一个MyData实例,并填充一些值。我选择了应该容易在内存中找到的值。

代码如下:
data := MyData{
        aByte:   0x1,
        aShort:  0x0203,
        anInt32: 0x04050607,
        aSlice:  []byte{
                0x08, 0x09, 0x0a,
        },
 }

现在一些代码访问组成这个结构的字节。 我们想要获取这个结构的实例,在内存中找到它的地址,并打印出该内存中的字节。

我们使用unsafe包来帮助我们这样做。 这让我们绕过Go类型系统将指向我们的结构的指针转换为32字节数组,这个数组就是组成我们的结构体的内存数据。

代码如下:
dataBytes := (*[32]byte)(unsafe.Pointer(&data))
fmt.Printf("Bytes are %#v\n", dataBytes)

我们运行以上代码。 这是结果,第一个字段,aByte,从我们的结构中以粗体显示。 这是希望你期望的,单字节aByte = 0x01在偏移0。

代码如下:
Bytes are &[32]uint8{**0x1**, 0x0, 0x3, 0x2, 0x7, 0x6, 0x5, 0x4, 0x5a, 0x5, 0x1, 0x20, 0xc4, 0x0, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}

接下来我们来看看AShort。 这是在偏移量2的位置并且长度为2.如果你记得,aShort = 0x0203,但数据显示的字节是倒序。 这是因为大多数现代CPU都是Little-Endian:该值的最低位字节首先出现在内存中。

代码如下:
Bytes are &[32]uint8{0x1, 0x0, **0x3, 0x2**, 0x7, 0x6, 0x5, 0x4, 0x5a, 0x5, 0x1, 0x20, 0xc4, 0x0, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}

同样的事情发生在Int32 = 0x04050607。 最低位字节首先出现在内存中。

代码如下:
Bytes are &[32]uint8{0x1, 0x0, 0x3, 0x2, **0x7, 0x6, 0x5, 0x4**, 0x5a, 0x5, 0x1, 0x20, 0xc4, 0x0, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}

四、神秘的插曲

现在我们看到什么? 这是aSlice = [] byte {0x08,0x09,0x0a} ,在偏移量8的24个字节。我没有看到我的序列0x08,0x09,0x0a的任何地方的任何符号。 这是怎么回事?

代码如下:
Bytes are &[32]uint8{0x1, 0x0, 0x3, 0x2, 0x7, 0x6, 0x5, 0x4, **0x5a, 0x5, 0x1, 0x20, 0xc4, 0x0, 0x0, 0x0, 0x3, 0x0**, **0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0**}

Go反射包里自有答案。 slice在Go语言中由以下结构体表示,该结构从指针数据开始,该数据指向保存切片中的数据的存储器; 然后是该存储器中的有用数据的长度Len,以及该存储器的大小Cap。

代码如下:
type SliceHeader struct {
        Data uintptr
        Len  int
        Cap  int
}

如果把它提供给我们的代码,我们得到以下偏移和大小。 数据指针和两个长度各为8个字节,具有8个字节对齐。

代码如下:
Struct is 24 bytes long
Data at offset 0, size=8, align=8
Len at offset 8, size=8, align=8
Cap at offset 16, size=8, align=8

如果我们再看一下后面的内存结构,我们可以看到数据是在地址0x000000c42001055a。 之后,我们看到Len和Cap都是3,这是我们的数据的长度。

代码如下:
Bytes are &[32]uint8{0x1, 0x0, 0x3, 0x2, 0x7, 0x6, 0x5, 0x4, **0x5a, 0x5, 0x1, 0x20, 0xc4, 0x0, 0x0, 0x0**, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}

我们可以直接用以下代码访问这些数据字节。 首先让我们直接访问slice头,然后打印出数据指向的内存。

代码如下:
dataslice := *(*reflect.SliceHeader)(unsafe.Pointer(&data.aSlice))
fmt.Printf("Slice data is %#v\n",
        (*[3]byte)(unsafe.Pointer(dataslice.Data)))

这是输出:

代码如下:
Slice data is &[3]uint8{0x8, 0x9, 0xa}

总结

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于Golang的相关知识,也可关注golang学习网公众号。

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
一步步教你编写可测试的Go语言代码一步步教你编写可测试的Go语言代码
上一篇
一步步教你编写可测试的Go语言代码
Centos下搭建golang环境及vim高亮Go关键字设置的方法
下一篇
Centos下搭建golang环境及vim高亮Go关键字设置的方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    514次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    499次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO  AI Mermaid 流程图:自然语言生成,文本驱动可视化创作
    AI Mermaid流程图
    SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
    146次使用
  • 搜获客笔记生成器:小红书医美爆款内容AI创作神器
    搜获客【笔记生成器】
    搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
    114次使用
  • iTerms:一站式法律AI工作台,智能合同审查起草与法律问答专家
    iTerms
    iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
    154次使用
  • TokenPony:AI大模型API聚合平台,一站式接入,高效稳定高性价比
    TokenPony
    TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
    112次使用
  • 迅捷AIPPT:AI智能PPT生成器,高效制作专业演示文稿
    迅捷AIPPT
    迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
    141次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码