当前位置:首页 > 文章列表 > Golang > Go问答 > Golang crypto/tls 内存泄漏

Golang crypto/tls 内存泄漏

来源:stackoverflow 2024-04-22 23:45:43 0浏览 收藏

今天golang学习网给大家带来了《Golang crypto/tls 内存泄漏》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~

问题内容

问题:为什么即使变量超出范围,*tls.conn 也不会被垃圾回收,并且使用 (*tls.conn).close() 方法正确关闭它?下面给出了可重现的完整代码。

动机:到目前为止,我已经尝试了 2 个 websocket 库(https://github.com/gorilla/websocket 和 https://github.com/gobwas/ws) - 运行服务(> 24 小时),在其整个生命周期中作为客户端维护约 10 个 websocket 连接。有时它们与服务器断开连接,在这种情况下我会建立一个新连接。内存使用量在其整个生命周期中稳步增长,并且从内存配置文件中,它指向留在堆上的底层 *tls.conn 对象。 (不被垃圾收集)。

要重现的完整代码

package main

import (
    "crypto/tls"
    "fmt"
    "log"
    _ "net/http/pprof"
    "os"
    "os/signal"
    "runtime"
    "syscall"
    "time"
)

func finalizer(_ interface{}) {
    fmt.println("finalizer called")
}

func main() {
    // setup interrupt handler
    c := make(chan os.signal)
    signal.notify(c, os.interrupt, syscall.sigterm)

    for i := 0; i < 100; i++ {
        go func() {
            for {
                tlsconnectthencloseafterwait()
            }
        }()
    }

    <-c
    os.exit(1)

}

func tlsconnectthencloseafterwait() {
    conn, err := tls.dial("tcp", "mail.google.com:443", &tls.config{})
    if err != nil {
        log.fatalln("failed to connect: " + err.error())
    }
    defer func() {
        err := conn.close()
        if err != nil {
            log.fatalln("closing conn failed")
        }
    }()

    runtime.setfinalizer(conn, finalizer)
    conn.write([]byte("hello how are you"))

    timer := time.newtimer(time.second)
    <-timer.c
}

godebug=gctrace=1 ./main 的输出

gc 1 @0.088s 1%: 0+9.0+0 ms clock, 0+12/11/0+0 ms cpu, 4->5->1 MB, 5 MB goal, 12 P
gc 2 @0.102s 3%: 0+4.9+0.99 ms clock, 0+5.9/6.0/0+11 ms cpu, 4->4->1 MB, 5 MB goal, 12 P
gc 3 @0.114s 5%: 0+4.9+1.0 ms clock, 0+3.9/10/2.9+12 ms cpu, 4->4->2 MB, 5 MB goal, 12 P
gc 4 @0.171s 4%: 0+5.0+0 ms clock, 0+1.0/9.9/0+0 ms cpu, 4->5->3 MB, 5 MB goal, 12 P
gc 5 @0.196s 4%: 0+5.9+0 ms clock, 0+2.9/9.9/0+0 ms cpu, 5->7->3 MB, 6 MB goal, 12 P
gc 6 @0.352s 2%: 1.0+2.0+0 ms clock, 12+0/1.9/1.9+0 ms cpu, 6->7->4 MB, 7 MB goal, 12 P
gc 7 @0.365s 2%: 0.99+3.0+0 ms clock, 11+3.0/5.0/0+0 ms cpu, 7->8->5 MB, 8 MB goal, 12 P
gc 8 @0.399s 3%: 0+13+0 ms clock, 0+18/29/1.0+0 ms cpu, 9->11->6 MB, 10 MB goal, 12 P
gc 9 @1.278s 1%: 1.0+28+0 ms clock, 12+9.9/53/0+0 ms cpu, 10->13->9 MB, 13 MB goal, 12 P
gc 10 @1.433s 2%: 1.0+22+0 ms clock, 12+45/55/1.0+0 ms cpu, 14->16->9 MB, 18 MB goal, 12 P
gc 11 @1.534s 2%: 0+6.0+0 ms clock, 0+4.0/15/3.0+0 ms cpu, 16->17->11 MB, 19 MB goal, 12 P
gc 12 @2.479s 1%: 0+3.0+0 ms clock, 0+0/6.0/18+0 ms cpu, 20->20->12 MB, 22 MB goal, 12 P
gc 13 @2.656s 1%: 1.0+10+0 ms clock, 12+3.0/30/4.9+0 ms cpu, 23->25->16 MB, 25 MB goal, 12 P
gc 14 @3.737s 1%: 0+6.0+0 ms clock, 0+3.0/18/9.0+0 ms cpu, 31->33->20 MB, 33 MB goal, 12 P
gc 15 @4.830s 0%: 0+5.9+0 ms clock, 0+5.0/13/16+0 ms cpu, 39->40->25 MB, 41 MB goal, 12 P
gc 16 @6.733s 0%: 0.99+16+0.99 ms clock, 11+7.9/47/80+11 ms cpu, 50->50->32 MB, 51 MB goal, 12 P
gc 17 @8.140s 0%: 0.99+21+0 ms clock, 11+3.0/59/125+0 ms cpu, 64->64->42 MB, 65 MB goal, 12 P
gc 18 @11.168s 0%: 1.0+28+0 ms clock, 12+24/78/97+0 ms cpu, 82->82->54 MB, 84 MB goal, 12 P
gc 19 @14.433s 0%: 0.99+27+0 ms clock, 11+9.0/74/146+0 ms cpu, 106->106->70 MB, 108 MB goal, 12 P
gc 20 @18.883s 0%: 0+47+0 ms clock, 0+6.0/133/211+0 ms cpu, 137->138->91 MB, 140 MB goal, 12 P
gc 21 @24.437s 0%: 0.99+30+0.99 ms clock, 11+15/91/101+11 ms cpu, 177->178->118 MB, 182 MB goal, 12 P
gc 22 @31.872s 0%: 1.0+105+0 ms clock, 12+60/317/256+0 ms cpu, 230->233->155 MB, 236 MB goal, 12 P
gc 23 @41.705s 0%: 0+101+0 ms clock, 0+15/283/549+0 ms cpu, 302->303->200 MB, 310 MB goal, 12 P
gc 24 @54.302s 0%: 0+92+0 ms clock, 0+9.0/278/472+0 ms cpu, 390->392->260 MB, 400 MB goal, 12 P
gc 25 @70.777s 0%: 0+38+0 ms clock, 0+4.9/113/321+0 ms cpu, 508->508->337 MB, 521 MB goal, 12 P
gc 26 @92.203s 0%: 0+108+0 ms clock, 0+57/326/391+0 ms cpu, 658->662->442 MB, 675 MB goal, 12 P
gc 27 @120.781s 0%: 2.0+99+0 ms clock, 24+11/292/529+0 ms cpu, 862->864->574 MB, 884 MB goal, 12 P

终结器永远不会被调用,并且内存不断增长。

使用go版本go1.15.8 windows/amd64

还链接到此处的 github 问题:https://github.com/golang/go/issues/41987


正确答案


您似乎误用了 runtime.setfinalizerthe doc 的内容如下:

[第一个参数]必须是一个指针,指向通过调用 new、获取复合文字的地址或获取局部变量的地址分配的对象。

(我的重点)

如果我将 &conn (而不是 conn 本身)传递给 runtime.setfinalizer,则终结器会被调用,并且堆永远不会超过 8 mb:

$ GODEBUG=gctrace=1 ./main
gc 1 @1.789s 0%: 0.041+0.67+0.018 ms clock, 0.33+0.31/1.0/2.3+0.14 ms cpu, 4->4->1 MB, 5 MB goal, 8 P
gc 2 @1.874s 0%: 0.044+0.69+0.015 ms clock, 0.35+0.20/1.0/2.4+0.12 ms cpu, 4->4->2 MB, 5 MB goal, 8 P
gc 3 @1.880s 0%: 0.064+0.79+0.014 ms clock, 0.51+0.22/1.1/2.3+0.11 ms cpu, 4->4->2 MB, 5 MB goal, 8 P
gc 4 @1.887s 0%: 0.14+1.5+0.080 ms clock, 1.1+1.6/2.5/0+0.64 ms cpu, 5->5->3 MB, 6 MB goal, 8 P
gc 5 @1.904s 0%: 0.097+1.1+0.025 ms clock, 0.77+1.0/1.9/2.6+0.20 ms cpu, 6->6->3 MB, 7 MB goal, 8 P
gc 6 @1.974s 0%: 0.12+1.7+0.12 ms clock, 0.99+1.4/2.9/1.2+0.98 ms cpu, 6->7->3 MB, 7 MB goal, 8 P
gc 7 @2.900s 0%: 0.22+1.9+0.025 ms clock, 1.8+5.7/2.9/0+0.20 ms cpu, 7->7->4 MB, 8finalizer called
 MB goal, 8finalizer called
 P
finalizer called
finalizer called
finalizer called
finalizer called
finalizer called
finalizer called
--snip--

使用 -gcflags="-m" 编译程序显示局部变量 conn 已移至堆中。我不是终结器专家(到目前为止),但我怀疑您滥用 runtime.setfinalizer 会导致保留对 conn 变量的引用,从而使其每个实例不符合垃圾回收的条件,从而导致内存泄漏。 p>

我不清楚你为什么要使用终结器;传统观点是finalizers are best avoided

理论要掌握,实操不能落!以上关于《Golang crypto/tls 内存泄漏》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

版本声明
本文转载于:stackoverflow 如有侵犯,请联系study_golang@163.com删除
亿航EH216-S荣获全球首张eVTOL三证,引领无人驾驶航空新时代亿航EH216-S荣获全球首张eVTOL三证,引领无人驾驶航空新时代
上一篇
亿航EH216-S荣获全球首张eVTOL三证,引领无人驾驶航空新时代
WIN7不能打开exe文件的处理方法
下一篇
WIN7不能打开exe文件的处理方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    10次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    9次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    8次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    13次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    14次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码