当前位置:首页 > 文章列表 > 文章 > python教程 > Python 垃圾回收机制中的引用计数

Python 垃圾回收机制中的引用计数

来源:51CTO.COM 2024-04-21 21:45:10 0浏览 收藏

文章不知道大家是否熟悉?今天我将给大家介绍《Python 垃圾回收机制中的引用计数》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!

Python 中的 __del__ 魔法方法,也被称为对象的终结者,是一个在对象即将被从内存中移除之前被调用的方法。它实际上并不做从内存中删除对象的工作,我们将在后面看到它是如何发生的。相反,这个方法是用来做任何在对象被移除前需要发生的清理工作。例如,关闭对象在创建时打开的任何文件。

在本节中,我们将使用下面这个类作为例子。

class MyNameClass:
def __init__(self, name):
self.name = name

def __del__(self):
print(f"Deleting {self.name}!")

在上面的例子中,我们已经定义了我们的类在初始化时接受一个名字的输入,当调用 finaliser 时,它会通过打印相关实例的名字让我们知道。这样,我们就可以了解到哪些对象被从内存中删除,以及何时被删除。

那么,CPython 什么时候会决定从内存中删除一个对象呢?有两种方式(从CPython 3.10 开始)会发生这种情况:引用计数和垃圾回收。

引用计数

如果我们在 Python 中有一个指向某个对象的指针,那就是对该对象的引用。对于一个给定的对象 a ,CPython 会跟踪有多少其他东西指向 a 。如果这个计数器达到零,就可以安全地从内存中删除这个对象,因为没有其他东西在使用它。让我们看一个例子。

>>> Harward = MyNameClass("Harward")
>>> del Harward
Deleting Harward!
>>>

在这里,我们创建了一个新的对象(MyNamedClass("Harward")),并创建了一个指向它的指针(Harward =)。然后,当我们删除 Harwade 时,我们删除了这个引用,MyNamedClass 实例现在的引用计数为 0。 所以,CPython 决定从内存中删除它--而且,就在这之前,它的 __del__ 方法被调用,打印出了我们看到的上面的信息。

如果我们对一个对象创建了多个引用,我们将不得不摆脱所有的引用,以便使该对象被删除。

>>> bob = MyNameClass("Bob")
>>> bob_two = bob # creating a new pointer to the same object
>>> del bob # this doesn't cause the object to be removed...
>>> del bob_two # ... but this does
Deleting Bob!

当然,我们的 MyNamedClass 实例本身可以包含指针--毕竟它们是任意的 Python 对象,我们可以给它们添加任何我们喜欢的属性。让我们看一个例子。

>>> jane = MyNamedClass("Jane")
>>> bob = MyNamedClass("Bob")
>>> jane.friend = bob # now the "Jane" object contains a pointer to the "Bob" object...
>>> bob.friend = jane

我们在上面的代码片断中所做的是设置了一些循环引用。名字为 Jane 的对象包含一个指向名字为 Bob 的对象的指针,反之亦然。当我们做下面的事情时,情况就变得有趣了。

>>> del jane
>>> del bob

我们现在已经删除了从命名空间到对象的指针。现在,我们完全不能访问那些 MyNameClass 对象了--但我们并没有收到告诉我们它们即将被删除的打印信息。这是因为这些对象仍有引用,包含在彼此之间,因此它们的引用计数不是 0 。

我们在这里创建的是一个循环隔离体;在这个结构中,每个对象在循环中至少有一个引用,使其保持活力,但循环中的所有对象都不能从命名空间中被访问。

循环隔离的直观表现

下面是我们创建一个循环隔离时的直观表现。

首先,我们创建两个对象,每个对象在命名空间中都有一个名字。

Python 垃圾回收机制中的引用计数

接下来,我们通过在每个对象上添加一个指针来连接我们的两个对象。

Python 垃圾回收机制中的引用计数

最后,我们通过删除两个对象的原始名称来从命名空间中删除指针。在这一点上,这两个对象从名字空间中是不可访问的,但每个对象都包含一个指向另一个对象的指针,所以它们的引用计数不是零。

Python 垃圾回收机制中的引用计数

所以,很明显,引用计数本身并不足以保持运行时的工作内存中没有无用的、不可回收的对象。这就是CPython的垃圾收集器发挥作用的地方。

到这里,我们也就讲完了《Python 垃圾回收机制中的引用计数》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于Python,内存,引用计数的知识点!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
gRPC 到远程服务器的带宽较慢gRPC 到远程服务器的带宽较慢
上一篇
gRPC 到远程服务器的带宽较慢
Go 处理 JSON 响应和请求
下一篇
Go 处理 JSON 响应和请求
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    9次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    20次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    28次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    37次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    34次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码