当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器

剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器

来源:51CTO.COM 2024-04-21 19:54:36 0浏览 收藏

积累知识,胜过积蓄金银!毕竟在科技周边开发的过程中,会遇到各种各样的问题,往往都是一些细节知识点还没有掌握好而导致的,因此基础知识点的积累是很重要的。下面本文《剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器》,就带大家讲解一下知识点,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器



  • 论文链接:https://arxiv.org/abs/2402.08327
  • DEMO 链接:https://u60544-b8d4-53eaa55d.westx.seetacloud.com:8443/
  • 项目主页链接:https://preflmr.github.io/
  • 论文标题:PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers

背景

虽然多模态大模型(如GPT4-Vision、Gemini等)展示了强大的通用图文理解能力,但在处理需要专业知识的问题时表现不如人意。即使是GPT4-Vision,也无法有效回答知识密集型问题(如图一所示),这给许多企业级应用带来了挑战。

剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器

GPT4-Vision 可以通过 PreFLMR 多模态知识检索器获取相关知识,并生成准确的答案。图中展示了模型的实际输出结果。

检索增强生成(RAG,Retrieval-Augmented Generation)为解决这个问题提供了一个简单有效的方法,让多模态大模型在某个领域变得像“领域专家”一样。其工作原理如下:首先,利用轻量级知识检索器(Knowledge Retriever)从专业数据库(如Wikipedia或企业知识库)中检索相关的专业知识;接着,大型模型将这些知识与问题一起作为输入,输出准确的答案。多模态知识提取器的知识“召回能力”直接影响着大型模型在回答推理问题时是否能获取准确的专业知识。

近期,剑桥大学信息工程系人工智能实验室完整开源了首个预训练、通用多模态后期交互知识检索器 PreFLMR (Pre-trained Fine-grained Late-interaction Multi-modal Retriever)。相比以往常见的模型,PreFLMR 有以下特点:

PreFLMR是一款通用预训练模型,能有效解决文本检索、图像检索和知识检索等多个子任务。经过百万级多模态数据的预训练,该模型在多个下游检索任务中表现出色。另外,作为一款优秀的基础模型,PreFLMR 经过针对私有数据的微调后,能够迅速发展成为优秀的领域专用模型。

剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器

图 2:PreFLMR 模型同时在多项任务上取得极佳的多模态检索表现,是一个极强的预训练基底模型。

2. 传统的密集文本检索(Dense Passage Retrieval, DPR)只使用一个向量表征问询(Query)或文档(Document)。剑桥团队在 NeurIPS 2023 发表的 FLMR 模型证明了 DPR 的单向量表征设计会导致细粒度信息损失,导致 DPR 在需要精细信息匹配的检索任务上表现不佳。尤其是在多模态任务中,用户的问询(Query)包含复杂场景信息,压缩至一维向量极大抑制了特征的表达能力。PreFLMR 继承并改进了 FLMR 的结构,使其在多模态知识检索中有得天独厚的优势。

剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器

图 3:PreFLMR 在字符级别(Token level)上编码问询(Query,左侧 1、2、3)和文档(Document,右侧 4),相比于将所有信息压缩至一维向量的 DPR 系统有信息细粒度上的优势。

3.PreFLMR 能够根据用户输入的指令(例如 “提取能用于回答以下问题的文档” 或 “提取与图中物品相关的文档”),从庞大的知识库中提取相关的文档,帮助多模态大模型大幅提升在专业知识问答任务上的表现。

剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器

剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器


剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器

图 4:PreFLMR 可以同时处理图片提取文档、根据问题提取文档、根据问题和图片一起提取文档的多模态问询任务。

剑桥大学团队开源了三个不同规模的模型,模型的参数量由小到大分别为:PreFLMR_ViT-B (207M)、PreFLMR_ViT-L (422M)、PreFLMR_ViT-G (2B),供使用者根据实际情况选取。

除了开源模型 PreFLMR 本身,该项目还在该研究方向做出了两个重要贡献:

  1. 该项目同时开源了一个训练和评估通用知识检索器的大规模数据集,Multi-task Multi-modal Knowledge Retrieval Benchmark (M2KR),包含 10 个在学界中被广泛研究的检索子任务和总计超过百万的检索对。
  2. 在论文中,剑桥大学团队对比了不同大小、不同表现的图像编码器和文本编码器,总结了扩大参数和预训练多模态后期交互知识检索系统的最佳实践,为未来的通用检索模型提供经验性的指导。

下文将简略介绍 M2KR 数据集,PreFLMR 模型和实验结果分析。

M2KR 数据集

为了大规模预训练和评估通用多模态检索模型,作者汇编了十个公开的数据集并将其转换为统一的问题 - 文档检索格式。这些数据集的原本任务包括图像描述(image captioning),多模态对话(multi-modal dialogue)等等。下图展示了其中五个任务的问题(第一行)和对应文档(第二行)。

剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器

图 5:M2KR 数据集中的部分知识提取任务

PreFLMR 检索模型

剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器

图 6:PreFLMR 的模型结构。问询(Query)被编码为 Token-level 的特征。PreFLMR 对问询矩阵中的每一个向量,找到文档矩阵中的最近向量并计算点积,然后对这些最大点积求和得到最后的相关度。

PreFLMR 模型基于发表于 NeurIPS 2023 的 Fine-grained Late-interaction Multi-modal Retriever (FLMR) 并进行了模型改进和 M2KR 上的大规模预训练。相比于 DPR,FLMR 和 PreFLMR 用由所有的 token 向量组成的矩阵对文档和问询进行表征。Tokens 包含文本 tokens 和投射到文本空间中的图像 tokens。后期交互(late interaction)是一种高效计算两个表征矩阵之间相关性的算法。具体做法为:对问询矩阵中的每一个向量,找到文档矩阵中的最近向量并计算点积。然后对这些最大点积求和得到最后的相关度。这样,每个 token 的表征都可以显式地影响最终的相关性,以此保留了 token-level 的细粒度(fine-grained)信息。得益于专门的后期交互检索引擎,PreFLMR 在 40 万文档中提取 100 个相关文档仅需 0.2 秒,这极大地提高了 RAG 场景中的可用性。

PreFLMR 的预训练包含以下四个阶段:

  • 文本编码器预训练:首先,在 MSMARCO(一个纯文本知识检索数据集)上预训练一个后期交互文文检索模型作为 PreFLMR 的文本编码器。
  • 图像 - 文本投射层预训练:其次,在 M2KR 上训练图像 - 文本投射层并冻结其它部分。该阶段只使用经过投射的图像向量进行检索,旨在防止模型过度依赖文本信息。
  • 持续预训练:然后,在 E-VQA,M2KR 中的一个高质量知识密集型视觉问答任务上持续训练文本编码器和图像 - 文本投射层。这一阶段旨在提升 PreFLMR 的精细知识检索能力。
  • 通用检索训练:最后,在整个 M2KR 数据集上训练所有权重,只冻结图像编码器。同时,将问询文本编码器和文档文本编码器的参数解锁进行分别训练。这一阶段旨在提高 PreFLMR 的通用检索能力。

同时,作者展示了 PreFLMR 可以在子数据集(如 OK-VQA、Infoseek)上进一步微调以在特定任务上获得更好的检索性能。

实验结果和纵向扩展

最佳检索结果:表现最好的 PreFLMR 模型使用 ViT-G 作为图像编码器和 ColBERT-base-v2 作为文本编码器,总计二十亿参数。它在 7 个 M2KR 检索子任务(WIT,OVEN,Infoseek, E-VQA,OKVQA 等)上取得了超越基线模型的表现。

扩展视觉编码更加有效:作者发现将图像编码器 ViT 从 ViT-B(86M)升级到 ViT-L(307M)带来了显著的效果提升,但是将文本编码器 ColBERT 从 base(110M)扩展到 large(345M)导致表现下降并造成了训练不稳定问题。实验结果表明对于后期交互多模态检索系统,增加视觉编码器的参数带来的回报更大。同时,使用多层 Cross-attention 进行图像 - 文本投射的效果与使用单层相同,因此图像 - 文本投射网络的设计并不需要过于复杂。

PreFLMR 让 RAG 更加有效:在知识密集型视觉问答任务上,使用 PreFLMR 进行检索增强大大提高了最终系统的表现:在 Infoseek 和 EVQA 上分别达到了 94% 和 275% 的效果提升,经过简单的微调,基于 BLIP-2 的模型能够击败千亿参数量的 PALI-X 模型和使用 Google API 进行增强的 PaLM-Bison+Lens 系统。

结论

剑桥人工智能实验室提出的 PreFLMR 模型是第一个开源的通用后期交互多模态检索模型。经过在 M2KR 上的百万级数据预训练,PreFLMR 在多项检索子任务中展现出强劲的表现。M2KR 数据集,PreFLMR 模型权重和代码均可以在项目主页 https://preflmr.github.io/ 获取。

拓展资源

  • FLMR paper (NeurIPS 2023): https://proceedings.neurips.cc/paper_files/paper/2023/hash/47393e8594c82ce8fd83adc672cf9872-Abstract-Conference.html 
  • 代码库:https://github.com/LinWeizheDragon/Retrieval-Augmented-Visual-Question-Answering
  • 英文版博客:https://www.jinghong-chen.net/preflmr-sota-open-sourced-multi/
  • FLMR 简介:https://www.jinghong-chen.net/fined-grained-late-interaction-multimodal-retrieval-flmr/

终于介绍完啦!小伙伴们,这篇关于《剑桥团队开源:赋能多模态大模型RAG应用,首个预训练通用多模态后期交互知识检索器》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
Java Hibernate中的查询策略和抓取策略怎么使用Java Hibernate中的查询策略和抓取策略怎么使用
上一篇
Java Hibernate中的查询策略和抓取策略怎么使用
字符串数据在内存中的位置
下一篇
字符串数据在内存中的位置
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    30次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    45次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    40次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    53次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    43次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码