当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > PyTorch 该怎么学?太简单了

PyTorch 该怎么学?太简单了

来源:51CTO.COM 2024-04-21 17:03:39 0浏览 收藏

有志者,事竟成!如果你在学习科技周边,那么本文《PyTorch 该怎么学?太简单了》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

很多朋友都向我咨询如何学习PyTorch,实践证明,初学者只需掌握少量概念和用法即可。让我们一起看看这个简明指南的总结!

PyTorch 该怎么学?太简单了

构建Tensor

PyTorch 中的 Tensors 是多维数组,类似于 NumPy 的 ndarrays,但可以在 GPU 上运行:

import torch# Create a 2x3 tensortensor = torch.tensor([[1, 2, 3], [4, 5, 6]])print(tensor)

动态计算图

PyTorch 使用动态计算图,在执行操作时即时构建计算图,这为在运行时修改图形提供了灵活性:

# Define two tensorsa = torch.tensor([2.], requires_grad=True)b = torch.tensor([3.], requires_grad=True)# Compute resultc = a * bc.backward()# Gradientsprint(a.grad)# Gradient w.r.t a

GPU加速

PyTorch 允许在 CPU 和 GPU 之间轻松切换。使用 .to(device) 即可:

device = "cuda" if torch.cuda.is_available() else "cpu"tensor = tensor.to(device)

Autograd:自动微分

PyTorch 的 autograd 为tensor的所有运算提供了自动微分功能,设置 requires_grad=True可以跟踪计算:

x = torch.tensor([2.], requires_grad=True)y = x**2y.backward()print(x.grad)# Gradient of y w.r.t x

模块化神经网络

PyTorch 提供了 nn.Module 类来定义神经网络架构,通过子类化创建自定义层:

import torch.nn as nnclass SimpleNN(nn.Module):def __init__(self):super().__init__()self.fc = nn.Linear(1, 1)def forward(self, x):return self.fc(x)

预定义层和损失函数

PyTorch 在 nn 模块中提供了各种预定义层、损失函数和优化算法:

loss_fn = nn.CrossEntropyLoss()optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

Dataset 与 DataLoader

为实现高效的数据处理和批处理,PyTorch 提供了 Dataset 和 DataLoader 类:

from torch.utils.data import Dataset, DataLoaderclass CustomDataset(Dataset):# ... (methods to define)data_loader = DataLoader(dataset, batch_size=32, shuffle=True)

模型训练(循环)

通常PyTorch 的训练遵循以下模式:前向传播、计算损失、反向传递和参数更新:

for epoch in range(epochs):for data, target in data_loader:optimizer.zero_grad()output = model(data)loss = loss_fn(output, target)loss.backward()optimizer.step()

模型序列化

使用 torch.save() 和 torch.load() 保存并加载模型:

# Savetorch.save(model.state_dict(), 'model_weights.pth')# Loadmodel.load_state_dict(torch.load('model_weights.pth'))

JIT

PyTorch 默认以eager模式运行,但也为模型提供即时(JIT)编译:

scripted_model = torch.jit.script(model)scripted_model.save("model_jit.pt")

文中关于PyTorch的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《PyTorch 该怎么学?太简单了》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
曝华为赛力斯合作新品问界新M5首日预定量破六千曝华为赛力斯合作新品问界新M5首日预定量破六千
上一篇
曝华为赛力斯合作新品问界新M5首日预定量破六千
Win11分盘分错了怎么办?Win11给电脑重新分盘的方法
下一篇
Win11分盘分错了怎么办?Win11给电脑重新分盘的方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    105次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    98次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    118次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    109次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    114次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码