当前位置:首页 > 文章列表 > 文章 > python教程 > Python怎么异步发送日志到远程服务器

Python怎么异步发送日志到远程服务器

来源:亿速云 2024-04-12 22:36:36 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《Python怎么异步发送日志到远程服务器》,文章讲解的知识点主要包括,如果你对文章方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

StreamHandler和FileHandler

首先我们先来写一套简单输出到cmd和文件中的代码:

# -*- coding: utf-8 -*-
"""
-------------------------------------------------
 File Name:   loger
 Description :
 Author :    yangyanxing
 date:     2020/9/23
-------------------------------------------------
"""
import logging
import sys
import os
# 初始化logger
logger = logging.getLogger("yyx")
logger.setLevel(logging.DEBUG)
# 设置日志格式
fmt = logging.Formatter('[%(asctime)s] [%(levelname)s] %(message)s', '%Y-%m-%d
%H:%M:%S')
# 添加cmd handler
cmd_handler = logging.StreamHandler(sys.stdout)
cmd_handler.setLevel(logging.DEBUG)
cmd_handler.setFormatter(fmt)
# 添加文件的handler
logpath = os.path.join(os.getcwd(), 'debug.log')
file_handler = logging.FileHandler(logpath)
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(fmt)
# 将cmd和file handler添加到logger中
logger.addHandler(cmd_handler)
logger.addHandler(file_handler)
logger.debug("今天天气不错")

先初始化一个logger, 并且设置它的日志级别是DEBUG,然后添初始化了 cmd_handler和 file_handler,最后将它们添加到logger中, 运行脚本,会在cmd中打印出

[2020-09-23 10:45:56] [DEBUG] 今天天气不错且会写入到当前目录下的debug.log文件中

添加HTTPHandler

如果想要在记录时将日志发送到远程服务器上,可以添加一个 HTTPHandler , 在python标准库logging.handler中,已经为我们定义好了很多handler,有些我们可以直接用,本地使用tornado写一个接收 日志的接口,将接收到的参数全都打印出来

# 添加一个httphandler
import logging.handlers
http_handler = logging.handlers.HTTPHandler(r"127.0.0.1:1987", '/api/log/get')
http_handler.setLevel(logging.DEBUG)
http_handler.setFormatter(fmt)
logger.addHandler(http_handler)
logger.debug("今天天气不错")
结果在服务端我们收到了很多信息

{
'name': [b 'yyx'],
'msg': [b
'\xe4\xbb\x8a\xe5\xa4\xa9\xe5\xa4\xa9\xe6\xb0\x94\xe4\xb8\x8d\xe9\x94\x99'],
'args': [b '()'],
'levelname': [b 'DEBUG'],
'levelno': [b '10'],
'pathname': [b 'I:/workplace/yangyanxing/test/loger.py'],
'filename': [b 'loger.py'],
'module': [b 'loger'],
'exc_info': [b 'None'],
'exc_text': [b 'None'],
'stack_info': [b 'None'],
'lineno': [b '41'],
'funcName': [b ''],
'created': [b '1600831054.8881223'],
'msecs': [b '888.1223201751709'],
'relativeCreated': [b '22.99976348876953'],
'thread': [b '14876'],
'threadName': [b 'MainThread'],
'processName': [b 'MainProcess'],
'process': [b '8648'],
'message': [b
'\xe4\xbb\x8a\xe5\xa4\xa9\xe5\xa4\xa9\xe6\xb0\x94\xe4\xb8\x8d\xe9\x94\x99'],
'asctime': [b '2020-09-23 11:17:34']
}

可以说是信息非常之多,但是却并不是我们想要的样子,我们只是想要类似于

[2020-09-23 10:45:56][DEBUG] 今天天气不错这样的日志
logging.handlers.HTTPHandler 只是简单的将日志所有信息发送给服务端,至于服务端要怎么组织内 容是由服务端来完成. 所以我们可以有两种方法,一种是改服务端代码,根据传过来的日志信息重新组织一 下日志内容, 第二种是我们重新写一个类,让它在发送的时候将重新格式化日志内容发送到服务端。

我们采用第二种方法,因为这种方法比较灵活, 服务端只是用于记录,发送什么内容应该是由客户端来决定。

我们需要重新定义一个类,我们可以参考 logging.handlers.HTTPHandler 这个类,重新写一个httpHandler类

每个日志类都需要重写emit方法,记录日志时真正要执行是也就是这个emit方法:

class CustomHandler(logging.Handler):
  def __init__(self, host, uri, method="POST"):
    logging.Handler.__init__(self)
    self.url = "%s/%s" % (host, uri)
    method = method.upper()
    if method not in ["GET", "POST"]:
      raise ValueError("method must be GET or POST")
    self.method = method
  def emit(self, record):
    '''
   重写emit方法,这里主要是为了把初始化时的baseParam添加进来
   :param record:
   :return:
   '''
    msg = self.format(record)
    if self.method == "GET":
      if (self.url.find("?") >= 0):
        sep = '&'
      else:
        sep = '?'
      url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log":
msg}))
      requests.get(url, timeout=1)
    else:
      headers = {
        "Content-type": "application/x-www-form-urlencoded",
        "Content-length": str(len(msg))
     }
      requests.post(self.url, data={'log': msg}, headers=headers,
timeout=1)

上面代码中有一行定义发送的参数 msg = self.format(record)这行代码表示,将会根据日志对象设置的格式返回对应的内容。

之后再将内容通过requests库进行发送,无论使用get 还是post方式,服务端都可以正常的接收到日志

{'log': [b'[2020-09-23 11:39:45] [DEBUG]
\xe4\xbb\x8a\xe5\xa4\xa9\xe5\xa4\xa9\xe6\xb0\x94\xe4\xb8\x8d\xe9\x94\x99']}

将bytes类型转一下就得到了:

[2020-09-23 11:43:50] [DEBUG] 今天天气不错

异步的发送远程日志

现在我们考虑一个问题,当日志发送到远程服务器过程中,如果远程服务器处理的很慢,会耗费一定的时间, 那么这时记录日志就会都变慢修改服务器日志处理类,让其停顿5秒钟,模拟长时间的处理流程

async def post(self):
  print(self.getParam('log'))
  await asyncio.sleep(5)
  self.write({"msg": 'ok'})

此时我们再打印上面的日志:

logger.debug("今天天气不错")
logger.debug("是风和日丽的")

得到的输出为:

[2020-09-23 11:47:33] [DEBUG] 今天天气不错
[2020-09-23 11:47:38] [DEBUG] 是风和日丽的

我们注意到,它们的时间间隔也是5秒。
那么现在问题来了,原本只是一个记录日志,现在却成了拖累整个脚本的累赘,所以我们需要异步的来 处理远程写日志。

1使用多线程处理

首先想的是应该是用多线程来执行发送日志方法;

def emit(self, record):
  msg = self.format(record)
  if self.method == "GET":
    if (self.url.find("?") >= 0):
      sep = '&'
    else:
      sep = '?'
    url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log": msg}))
    t = threading.Thread(target=requests.get, args=(url,))
    t.start()
  else:
    headers = {
      "Content-type": "application/x-www-form-urlencoded",
      "Content-length": str(len(msg))
   }
    t = threading.Thread(target=requests.post, args=(self.url,), kwargs=
{"data":{'log': msg},

这种方法是可以达到不阻塞主目的,但是每打印一条日志就需要开启一个线程,也是挺浪费资源的。我们也 可以使用线程池来处理

2使用线程池处理

python 的 concurrent.futures 中有ThreadPoolExecutor, ProcessPoolExecutor类,是线程池和进程池, 就是在初始化的时候先定义几个线程,之后让这些线程来处理相应的函数,这样不用每次都需要新创建线程

线程池的基本使用:

exector = ThreadPoolExecutor(max_workers=1) # 初始化一个线程池,只有一个线程
exector.submit(fn, args, kwargs) # 将函数submit到线程池中

如果线程池中有n个线程,当提交的task数量大于n时,则多余的task将放到队列中。
再次修改上面的emit函数

exector = ThreadPoolExecutor(max_workers=1)
def emit(self, record):
  msg = self.format(record)
  timeout = aiohttp.ClientTimeout(total=6)
  if self.method == "GET":
    if (self.url.find("?") >= 0):
      sep = '&'
    else:
      sep = '?'
    url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log": msg}))
    exector.submit(requests.get, url, timeout=6)
  else:
    headers = {
      "Content-type": "application/x-www-form-urlencoded",
      "Content-length": str(len(msg))
   }
    exector.submit(requests.post, self.url, data={'log': msg},
headers=headers, timeout=6)

这里为什么要只初始化一个只有一个线程的线程池? 因为这样的话可以保证先进队列里的日志会先被发 送,如果池子中有多个线程,则不一定保证顺序了。

3使用异步aiohttp库来发送请求

上面的CustomHandler类中的emit方法使用的是requests.post来发送日志,这个requests本身是阻塞运 行的,也正上由于它的存在,才使得脚本卡了很长时间,所们我们可以将阻塞运行的requests库替换为异步 的aiohttp来执行get和post方法, 重写一个CustomHandler中的emit方法

class CustomHandler(logging.Handler):
  def __init__(self, host, uri, method="POST"):
    logging.Handler.__init__(self)
    self.url = "%s/%s" % (host, uri)
    method = method.upper()
    if method not in ["GET", "POST"]:
      raise ValueError("method must be GET or POST")
    self.method = method
  async def emit(self, record):
    msg = self.format(record)
    timeout = aiohttp.ClientTimeout(total=6)
    if self.method == "GET":
      if (self.url.find("?") >= 0):
        sep = '&'
      else:
        sep = '?'
      url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log":
msg}))
      async with aiohttp.ClientSession(timeout=timeout) as session:
      async with session.get(self.url) as resp:
          print(await resp.text())
      else:
        headers = {
        "Content-type": "application/x-www-form-urlencoded",
        "Content-length": str(len(msg))
     }
      async with aiohttp.ClientSession(timeout=timeout, headers=headers)
as session:
      async with session.post(self.url, data={'log': msg}) as resp:
          print(await resp.text())

这时代码执行崩溃了:

C:\Python37\lib\logging\__init__.py:894: RuntimeWarning: coroutine
'CustomHandler.emit' was never awaited
self.emit(record)
RuntimeWarning: Enable tracemalloc to get the object allocation traceback

服务端也没有收到发送日志的请求。
究其原因是由于emit方法中使用 async with session.post 函数,它需要在一个使用async 修饰的函数 里执行,所以修改emit函数,使用async来修饰,这里emit函数变成了异步的函数, 返回的是一个 coroutine 对象,要想执行coroutine对象,需要使用await, 但是脚本里却没有在哪里调用 await emit() ,所以崩溃信息 中显示 coroutine 'CustomHandler.emit' was never awaited。

既然emit方法返回的是一个coroutine对象,那么我们将它放一个loop中执行

async def main():
  await logger.debug("今天天气不错")
  await logger.debug("是风和日丽的")
loop = asyncio.get_event_loop()
loop.run_until_complete(main())

执行依然报错:

raise TypeError('An asyncio.Future, a coroutine or an awaitable is '

意思是需要的是一个coroutine,但是传进来的对象不是。
这似乎就没有办法了,想要使用异步库来发送,但是却没有可以调用await的地方。

解决办法是有的,我们使用 asyncio.get_event_loop() 获取一个事件循环对象, 我们可以在这个对象上注册很多协程对象,这样当执行事件循环的时候,就是去执行注册在该事件循环上的协程,

我们通过一个小例子来看一下:

import asyncio
async def test(n):
 while n > 0:
   await asyncio.sleep(1)
   print("test {}".format(n))
   n -= 1
 return n

async def test2(n):
 while n >0:
   await asyncio.sleep(1)
   print("test2 {}".format(n))
   n -= 1
def stoploop(task):
 print("执行结束, task n is {}".format(task.result()))
 loop.stop()
loop = asyncio.get_event_loop()
task = loop.create_task(test(5))
task2 = loop.create_task(test2(3))
task.add_done_callback(stoploop)
task2 = loop.create_task(test2(3))
loop.run_forever()

我们使用 loop = asyncio.get_event_loop() 创建了一个事件循环对象loop, 并且在loop上创建了两个task, 并且给task1添加了一个回调函数,在task1它执行结束以后,将loop停掉。
注意看上面的代码,我们并没有在某处使用await来执行协程,而是通过将协程注册到某个事件循环对象上, 然后调用该循环的 run_forever() 函数,从而使该循环上的协程对象得以正常的执行。

上面得到的输出为:

test 5
test2 3
test 4
test2 2
test 3
test2 1
test 2
test 1
执行结束, task n is 0

可以看到,使用事件循环对象创建的task,在该循环执行run_forever() 以后就可以执行了如果不执行 loop.run_forever() 函数,则注册在它上面的协程也不会执行

loop = asyncio.get_event_loop()
task = loop.create_task(test(5))
task.add_done_callback(stoploop)
task2 = loop.create_task(test2(3))
time.sleep(5)
# loop.run_forever()

上面的代码将loop.run_forever() 注释掉,换成time.sleep(5) 停5秒, 这时脚本不会有任何输出,在停了5秒 以后就中止了,
回到之前的日志发送远程服务器的代码,我们可以使用aiohttp封装一个发送数据的函数, 然后在emit中将 这个函数注册到全局的事件循环对象loop中,最后再执行loop.run_forever()

loop = asyncio.get_event_loop()
class CustomHandler(logging.Handler):
  def __init__(self, host, uri, method="POST"):
    logging.Handler.__init__(self)
    self.url = "%s/%s" % (host, uri)
    method = method.upper()
    if method not in ["GET", "POST"]:
      raise ValueError("method must be GET or POST")
    self.method = method
  # 使用aiohttp封装发送数据函数
  async def submit(self, data):
    timeout = aiohttp.ClientTimeout(total=6)
    if self.method == "GET":
      if self.url.find("?") >= 0:
        sep = '&'
      else:
        sep = '?'
      url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log":
data}))
      async with aiohttp.ClientSession(timeout=timeout) as session:
        async with session.get(url) as resp:
          print(await resp.text())
    else:
      headers = {
        "Content-type": "application/x-www-form-urlencoded",
     }
      async with aiohttp.ClientSession(timeout=timeout, headers=headers)
as session:
        async with session.post(self.url, data={'log': data}) as resp:
          print(await resp.text())
    return True
  def emit(self, record):
    msg = self.format(record)
    loop.create_task(self.submit(msg))
# 添加一个httphandler
http_handler = CustomHandler(r"http://127.0.0.1:1987", 'api/log/get')
http_handler.setLevel(logging.DEBUG)
http_handler.setFormatter(fmt)
logger.addHandler(http_handler)
logger.debug("今天天气不错")
logger.debug("是风和日丽的")
loop.run_forever()

这时脚本就可以正常的异步执行了:

loop.create_task(self.submit(msg)) 也可以使用
asyncio.ensure_future(self.submit(msg), loop=loop) 来代替,目的都是将协程对象注册到事件循环中。

但这种方式有一点要注意,loop.run_forever() 将会一直阻塞,所以需要有个地方调用 loop.stop() 方法. 可以注册到某个task的回调中。

今天关于《Python怎么异步发送日志到远程服务器》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:亿速云 如有侵犯,请联系study_golang@163.com删除
Go中的函数声明严格吗?Go中的函数声明严格吗?
上一篇
Go中的函数声明严格吗?
美国将于 8 月 6~7 日就波音 737-9 Max 客机“掉门”事件举行听证会
下一篇
美国将于 8 月 6~7 日就波音 737-9 Max 客机“掉门”事件举行听证会
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 谱乐AI:青岛艾夫斯科技的多模型AI音乐生成工具
    谱乐AI
    谱乐AI是由青岛艾夫斯科技有限公司开发的AI音乐生成工具,采用Suno和Udio模型,支持多种音乐风格的创作。访问https://yourmusic.fun/,体验智能作曲与编曲,个性化定制音乐,提升创作效率。
    7次使用
  • Vozo AI:超真实AI视频换脸工具,提升创意内容制作
    Vozo AI
    探索Vozo AI,一款功能强大的在线AI视频换脸工具,支持跨性别、年龄和肤色换脸,适用于广告本地化、电影制作和创意内容创作,提升您的视频制作效率和效果。
    7次使用
  • AIGAZOU:免费AI图像生成工具,简洁高效,支持中文
    AIGAZOU-AI图像生成
    AIGAZOU是一款先进的免费AI图像生成工具,无需登录即可使用,支持中文提示词,生成高清图像。适用于设计、内容创作、商业和艺术领域,提供自动提示词、专家模式等多种功能。
    7次使用
  • Raphael AI:Flux.1 Dev支持的免费AI图像生成器
    Raphael AI
    探索Raphael AI,一款由Flux.1 Dev支持的免费AI图像生成器,无需登录即可无限生成高质量图像。支持多种风格,快速生成,保护隐私,适用于艺术创作、商业设计等多种场景。
    7次使用
  • Canva可画AI生图:智能图片生成新选择
    Canva可画AI生图
    Canva可画AI生图利用先进AI技术,根据用户输入的文字描述生成高质量图片和插画。适用于设计师、创业者、自由职业者和市场营销人员,提供便捷、高效、多样化的视觉素材生成服务,满足不同需求。
    8次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码