当前位置:首页 > 文章列表 > 文章 > java教程 > Java的HashMap多线程并发问题怎么解决

Java的HashMap多线程并发问题怎么解决

来源:亿速云 2024-04-11 11:33:35 0浏览 收藏

IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《Java的HashMap多线程并发问题怎么解决》,聊聊,我们一起来看看吧!

并发问题的症状

多线程put后可能导致get死循环

从前我们的Java代码因为一些原因使用了HashMap这个东西,但是当时的程序是单线程的,一切都没有问题。后来,我们的程序性能有问题,所以需要变成多线程的,于是,变成多线程后到了线上,发现程序经常占了100%的CPU,查看堆栈,你会发现程序都Hang在了HashMap.get()这个方法上了,重启程序后问题消失。但是过段时间又会来。而且,这个问题在测试环境里可能很难重现。

我们简单的看一下我们自己的代码,我们就知道HashMap被多个线程操作。而Java的文档说HashMap是非线程安全的,应该用ConcurrentHashMap。但是在这里我们可以来研究一下原因。简单代码如下:

package com.king.hashmap;
import java.util.HashMap;
public class TestLock {
     private HashMap map = new HashMap();
     public TestLock() {
         Thread t1 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.put( new Integer(i), i);
                 }
                 System.out.println( "t1 over" );
             }
         };
         Thread t2 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.put( new Integer(i), i);
                 }
                 System.out.println( "t2 over" );
             }
         };
         Thread t3 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.put( new Integer(i), i);
                 }
                 System.out.println( "t3 over" );
             }
         };
         Thread t4 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.put( new Integer(i), i);
                 }
                 System.out.println( "t4 over" );
             }
         };
         Thread t5 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.put( new Integer(i), i);
                 }
                 System.out.println( "t5 over" );
             }
         };
         Thread t6 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.get( new Integer(i));
                 }
                 System.out.println( "t6 over" );
             }
         };
         Thread t7 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.get( new Integer(i));
                 }
                 System.out.println( "t7 over" );
             }
         };
         Thread t8 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.get( new Integer(i));
                 }
                 System.out.println( "t8 over" );
             }
         };
         Thread t9 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.get( new Integer(i));
                 }
                 System.out.println( "t9 over" );
             }
         };
         Thread t10 = new Thread() {
             public void run() {
                 for ( int i = 0 ; i < 50000 ; i++) {
                     map.get( new Integer(i));
                 }
                 System.out.println( "t10 over" );
             }
         };
         t1.start();
         t2.start();
         t3.start();
         t4.start();
         t5.start();
         t6.start();
         t7.start();
         t8.start();
         t9.start();
         t10.start();
     }
     public static void main(String[] args) {
         new TestLock();
     }
}

就是启了10个线程,不断的往一个非线程安全的HashMap中put内容/get内容,put的内容很简单,key和value都是从0自增的整数(这个put的内容做的并不好,以致于后来干扰了我分析问题的思路)。对HashMap做并发写操作,我原以为只不过会产生脏数据的情况,但反复运行这个程序,会出现线程t1、t2被hang住的情况,多数情况下是一个线程被hang住另一个成功结束,偶尔会10个线程都被hang住。

产生这个死循环的根源在于对一个未保护的共享变量 — 一个”HashMap”数据结构的操作。当在所有操作的方法上加了”synchronized”后,一切恢复了正常。这算jvm的bug吗?应该说不是的,这个现象很早以前就报告出来了。Sun的工程师并不认为这是bug,而是建议在这样的场景下应采用”ConcurrentHashMap”,

CPU利用率过高一般是因为出现了出现了死循环,导致部分线程一直运行,占用cpu时间。问题原因就是HashMap是非线程安全的,多个线程put的时候造成了某个key值Entry key List的死循环,问题就这么产生了。

当另外一个线程get 这个Entry List 死循环的key的时候,这个get也会一直执行。最后结果是越来越多的线程死循环,最后导致服务器dang掉。我们一般认为HashMap重复插入某个值的时候,会覆盖之前的值,这个没错。但是对于多线程访问的时候,由于其内部实现机制(在多线程环境且未作同步的情况下,对同一个HashMap做put操作可能导致两个或以上线程同时做rehash动作,就可能导致循环键表出现,一旦出现线程将无法终止,持续占用CPU,导致CPU使用率居高不下),就可能出现安全问题了。

使用jstack工具dump出问题的那台服务器的栈信息。死循环的话,首先查找RUNNABLE的线程,找到问题代码如下:

java.lang.Thread.State:RUNNABLE 
at java.util.HashMap.get(HashMap.java:303) 
at com.sohu.twap.service.logic.TransformTweeter.doTransformTweetT5(TransformTweeter.java:183) 
共出现了23次。 
java.lang.Thread.State:RUNNABLE 
at java.util.HashMap.put(HashMap.java:374) 
at com.sohu.twap.service.logic.TransformTweeter.transformT5(TransformTweeter.java:816) 
共出现了3次。

注意:不合理使用HashMap导致出现的是死循环而不是死锁。

多线程put的时候可能导致元素丢失

主要问题出在addEntry方法的new Entry (hash, key, value, e),如果两个线程都同时取得了e,则他们下一个元素都是e,然后赋值给table元素的时候有一个成功有一个丢失。

put非null元素后get出来的却是null

在transfer方法中代码如下:

void transfer(Entry[] newTable) {
     Entry[] src = table;
     int newCapacity = newTable.length;
     for ( int j = 0 ; j < src.length; j++) {
         Entry e = src[j];
         if (e != null ) {
             src[j] = null ;
             do {
                 Entry next = e.next;
                 int i = indexFor(e.hash, newCapacity);
                 e.next = newTable[i];
                 newTable[i] = e;
                 e = next;
             } while (e != null );
         }
     }
}

在这个方法里,将旧数组赋值给src,遍历src,当src的元素非null时,就将src中的该元素置null,即将旧数组中的元素置null了,也就是这一句:

if (e != null ) {
         src[j] = null ;

此时若有get方法访问这个key,它取得的还是旧数组,当然就取不到其对应的value了。

总结:HashMap未同步时在并发程序中会产生许多微妙的问题,难以从表层找到原因。所以使用HashMap出现了违反直觉的现象,那么可能就是并发导致的了。

HashMap数据结构

我需要简单地说一下HashMap这个经典的数据结构。

HashMap通常会用一个指针数组(假设为table[])来做分散所有的key,当一个key被加入时,会通过Hash算法通过key算出这个数组的下标i,然后就把这个 插到table[i]中,如果有两个不同的key被算在了同一个i,那么就叫冲突,又叫碰撞,这样会在table[i]上形成一个链表。

我们知道,如果table[]的尺寸很小,比如只有2个,如果要放进10个keys的话,那么碰撞非常频繁,于是一个O(1)的查找算法,就变成了链表遍历,性能变成了O(n),这是Hash表的缺陷。

所以,Hash表的尺寸和容量非常的重要。一般来说,Hash表这个容器当有数据要插入时,都会检查容量有没有超过设定的thredhold,如果超过,需要增大Hash表的尺寸,但是这样一来,整个Hash表里的元素都需要被重算一遍。这叫rehash,这个成本相当的大。

HashMap的rehash源代码

下面,我们来看一下Java的HashMap的源代码。Put一个Key,Value对到Hash表中:

public V put(K key, V value)
{
     ......
     //算Hash值
     int hash = hash(key.hashCode());
     int i = indexFor(hash, table.length);
     //如果该key已被插入,则替换掉旧的value (链接操作)
     for (Entry<K,V> e = table[i]; e != null ; e = e.next) {
         Object k;
         if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
             V oldValue = e.value;
             e.value = value;
             e.recordAccess( this );
             return oldValue;
         }
     }
     modCount++;
     //该key不存在,需要增加一个结点
     addEntry(hash, key, value, i);
     return null ;
}

检查容量是否超标:

void addEntry( int hash, K key, V value, int bucketIndex)
{
     Entry<K,V> e = table[bucketIndex];
     table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
     //查看当前的size是否超过了我们设定的阈值threshold,如果超过,需要resize
     if (size++ >= threshold)
         resize( 2 * table.length);
}

新建一个更大尺寸的hash表,然后把数据从老的Hash表中迁移到新的Hash表中。

void resize( int newCapacity)
{
     Entry[] oldTable = table;
     int oldCapacity = oldTable.length;
     ......
     //创建一个新的Hash Table
     Entry[] newTable = new Entry[newCapacity];
     //将Old Hash Table上的数据迁移到New Hash Table上
     transfer(newTable);
     table = newTable;
     threshold = ( int )(newCapacity * loadFactor);
}

迁移的源代码,注意高亮处:

void transfer(Entry[] newTable)
{
     Entry[] src = table;
     int newCapacity = newTable.length;
     //下面这段代码的意思是:
     //  从OldTable里摘一个元素出来,然后放到NewTable中
     for ( int j = 0 ; j < src.length; j++) {
         Entry<K,V> e = src[j];
         if (e != null ) {
             src[j] = null ;
             do {
                 Entry<K,V> next = e.next;
                 int i = indexFor(e.hash, newCapacity);
                 e.next = newTable[i];
                 newTable[i] = e;
                 e = next;
             } while (e != null );
         }
     }
}

好了,这个代码算是比较正常的。而且没有什么问题。

正常的ReHash过程

画了个图做了个演示。

  1. 我假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。

  2. 最上面的是old hash 表,其中的Hash表的size=2, 所以key = 3, 7, 5,在mod 2以后都冲突在table1这里了。

  3. 接下来的三个步骤是Hash表 resize成4,然后所有的 重新rehash的过程。

Java的HashMap多线程并发问题怎么解决

并发的Rehash过程

(1)假设我们有两个线程。我用红色和浅蓝色标注了一下。我们再回头看一下我们的 transfer代码中的这个细节:

do {
     Entry<K,V> next = e.next; // <--假设线程一执行到这里就被调度挂起了
     int i = indexFor(e.hash, newCapacity);
     e.next = newTable[i];
     newTable[i] = e;
     e = next;
} while (e != null );

而我们的线程二执行完成了。于是我们有下面的这个样子。

Java的HashMap多线程并发问题怎么解决

注意:因为Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。我们可以看到链表的顺序被反转后。

(2)线程一被调度回来执行。

  • 先是执行 newTalbe[i] = e。

  • 然后是e = next,导致了e指向了key(7)。

  • 而下一次循环的next = e.next导致了next指向了key(3)。

Java的HashMap多线程并发问题怎么解决

(3)一切安好。 线程一接着工作。把key(7)摘下来,放到newTable[i]的第一个,然后把e和next往下移。

Java的HashMap多线程并发问题怎么解决

(4)环形链接出现。 e.next = newTable[i] 导致 key(3).next 指向了 key(7)。注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。

Java的HashMap多线程并发问题怎么解决

于是,当我们的线程一调用到,HashTable.get(11)时,悲剧就出现了——Infinite Loop。

三种解决方案

Hashtable替换HashMap

Hashtable 是同步的,但由迭代器返回的 Iterator 和由所有 Hashtable 的“collection 视图方法”返回的 Collection 的 listIterator 方法都是快速失败的:在创建 Iterator 之后,如果从结构上对 Hashtable 进行修改,除非通过 Iterator 自身的移除或添加方法,否则在任何时间以任何方式对其进行修改,Iterator 都将抛出 ConcurrentModificationException。因此,面对并发的修改,Iterator 很快就会完全失败,而不冒在将来某个不确定的时间发生任意不确定行为的风险。由 Hashtable 的键和值方法返回的 Enumeration 不是快速失败的。

注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误做法:迭代器的快速失败行为应该仅用于检测程序错误。

Collections.synchronizedMap将HashMap包装起来

返回由指定映射支持的同步(线程安全的)映射。为了保证按顺序访问,必须通过返回的映射完成对底层映射的所有访问。在返回的映射或其任意 collection 视图上进行迭代时,强制用户手工在返回的映射上进行同步:

Map m = Collections.synchronizedMap( new HashMap());
...
Set s = m.keySet();  // Needn't be in synchronized block
...
synchronized (m) {  // Synchronizing on m, not s!
Iterator i = s.iterator(); // Must be in synchronized block
     while (i.hasNext())
         foo(i.next());
}

不遵从此建议将导致无法确定的行为。如果指定映射是可序列化的,则返回的映射也将是可序列化的。

ConcurrentHashMap替换HashMap

支持检索的完全并发和更新的所期望可调整并发的哈希表。此类遵守与 Hashtable 相同的功能规范,并且包括对应于 Hashtable 的每个方法的方法版本。不过,尽管所有操作都是线程安全的,但检索操作不必锁定,并且不支持以某种防止所有访问的方式锁定整个表。此类可以通过程序完全与 Hashtable 进行互操作,这取决于其线程安全,而与其同步细节无关。 检索操作(包括 get)通常不会受阻塞,因此,可能与更新操作交迭(包括 put 和 remove)。检索会影响最近完成的更新操作的结果。对于一些聚合操作,比如 putAll 和 clear,并发检索可能只影响某些条目的插入和移除。类似地,在创建迭代器/枚举时或自此之后,Iterators 和 Enumerations 返回在某一时间点上影响哈希表状态的元素。它们不会抛出 ConcurrentModificationException。不过,迭代器被设计成每次仅由一个线程使用。

本篇关于《Java的HashMap多线程并发问题怎么解决》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:亿速云 如有侵犯,请联系study_golang@163.com删除
深入研究 PHP 函数性能测试和基准深入研究 PHP 函数性能测试和基准
上一篇
深入研究 PHP 函数性能测试和基准
使用 go 启动交互式 ssh 会话
下一篇
使用 go 启动交互式 ssh 会话
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    511次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    498次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 千音漫语:智能声音创作助手,AI配音、音视频翻译一站搞定!
    千音漫语
    千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
    201次使用
  • MiniWork:智能高效AI工具平台,一站式工作学习效率解决方案
    MiniWork
    MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
    203次使用
  • NoCode (nocode.cn):零代码构建应用、网站、管理系统,降低开发门槛
    NoCode
    NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
    201次使用
  • 达医智影:阿里巴巴达摩院医疗AI影像早筛平台,CT一扫多筛癌症急慢病
    达医智影
    达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
    207次使用
  • 智慧芽Eureka:更懂技术创新的AI Agent平台,助力研发效率飞跃
    智慧芽Eureka
    智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
    224次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码