当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 大模型中常用的注意力机制GQA详解以及Pytorch代码实现

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

来源:51CTO.COM 2024-04-04 14:18:46 0浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《大模型中常用的注意力机制GQA详解以及Pytorch代码实现》,文章讲解的知识点主要包括,如果你对科技周边方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

组查询注意力(Grouped Query Attention)是大型语言模型中的一种多查询注意力力方法,它的目标是在保持 MQA 速度的同时实现 MHA 的质量。Grouped Query Attention 将查询分组,每个组内的查询共享相同的注意力权重,这有助于降低计算复杂度和提高推理速度。

这篇文章中,我们将解释GQA的思想以及如何将其转化为代码。

GQA是在论文 GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints paper.中提出,这是一个相当简单和干净的想法,并且建立在多头注意力之上。

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

GQA

标准多头注意层(MHA)由H个查询头、键头和值头组成。每个头都有D个维度。Pytorch的代码如下:

from torch.nn.functional import scaled_dot_product_attention  # shapes: (batch_size, seq_len, num_heads, head_dim) query = torch.randn(1, 256, 8, 64) key = torch.randn(1, 256, 8, 64) value = torch.randn(1, 256, 8, 64)  output = scaled_dot_product_attention(query, key, value) print(output.shape) # torch.Size([1, 256, 8, 64])

对于每个查询头,都有一个对应的键。这个过程如下图所示:

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

而GQA将查询头分成G组,每组共享一个键和值。可以表示为:

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

使用可视化的表达就能非常清楚地了解GQA的工作原理,就像我们上面说的那样。GQA是一个相当简单和干净的想法。

Pytorch代码实现

让我们编写代码将这种将查询头划分为G组,每个组共享一个键和值。我们可以使用einops库有效地执行对张量的复杂操作。

首先,定义查询、键和值。然后设置注意力头的数量,数量是随意的,但是要保证num_heads_for_query % num_heads_for_key = 0,也就是说要能够整除。我们的定义如下:

import torch  # shapes: (batch_size, seq_len, num_heads, head_dim) query = torch.randn(1, 256, 8, 64) key = torch.randn(1, 256, 2, 64) value = torch.randn(1, 256, 2, 64)  num_head_groups = query.shape[2] // key.shape[2] print(num_head_groups) # each group is of size 4 since there are 2 kv_heads

为了提高效率,交换seq_len和num_heads维度,einops可以像下面这样简单地完成:

from einops import rearrange  query = rearrange(query, "b n h d -> b h n d") key = rearrange(key, "b s h d -> b h s d") value = rearrange(value, "b s h d -> b h s d")

然后就是需要在查询矩阵中引入”分组“的概念。

from einops import rearrange query = rearrange(query, "b (h g) n d -> b g h n d", g=num_head_groups) print(query.shape) # torch.Size([1, 4, 2, 256, 64])

上面的代码我们将二维重塑为二维:对于我们定义的张量,原始维度8(查询的头数)现在被分成两组(以匹配键和值中的头数),每组大小为4。

最后最难的部分是计算注意力的分数。但其实它可以在一行中通过insum操作完成的

from einops import einsum, rearrange # g stands for the number of groups # h stands for the hidden dim # n and s are equal and stands for sequence length scores = einsum(query, key, "b g h n d, b h s d -> b h n s") print(scores.shape) # torch.Size([1, 2, 256, 256])

scores张量和上面的value张量的形状是一样的。我们看看到底是怎么操作的

einsum帮我们做了两件事:

1、一个查询和键的矩阵乘法。在我们的例子中,这些张量的形状是(1,4,2,256,64)和(1,2,256,64),所以沿着最后两个维度的矩阵乘法得到(1,4,2,256,256)。

2、对第二个维度(维度g)上的元素求和——如果在指定的输出形状中省略了维度,einsum将自动完成这项工作,这样的求和是用来匹配键和值中的头的数量。

最后是注意分数与值的标准乘法:

import torch.nn.functional as F  scale = query.size(-1) ** 0.5 attention = F.softmax(similarity / scale, dim=-1)  # here we do just a standard matrix multiplication out = einsum(attention, value, "b h n s, b h s d -> b h n d")  # finally, just reshape back to the (batch_size, seq_len, num_kv_heads, hidden_dim) out = rearrange(out, "b h n d -> b n h d") print(out.shape) # torch.Size([1, 256, 2, 64])

这样最简单的GQA实现就完成了,只需要不到16行python代码:

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

最后再简单提一句MQA:多查询注意(MQA)是另一种简化MHA的流行方法。所有查询将共享相同的键和值。原理图如下:

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

可以看到,MQA和MHA都可以从GQA推导出来。具有单个键和值的GQA相当于MQA,而具有与头数量相等的组的GQA相当于MHA。

GQA的好处是什么?

GQA是最佳性能(MQA)和最佳模型质量(MHA)之间的一个很好的权衡。

下图显示,使用GQA,可以获得与MHA几乎相同的模型质量,同时将处理时间提高3倍,达到MQA的性能。这对于高负载系统来说可能是必不可少的。

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

在pytorch中没有GQA的官方实现。所以我找到了一个比较好的非官方实现,有兴趣的可以试试:

https://github.com/fkodom/grouped-query-attention-pytorch

GQA论文:

https://arxiv.org/pdf/2305.13245.pdf

今天关于《大模型中常用的注意力机制GQA详解以及Pytorch代码实现》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
为什么在 defer 语句中关闭通道会出现恐慌?为什么在 defer 语句中关闭通道会出现恐慌?
上一篇
为什么在 defer 语句中关闭通道会出现恐慌?
Vue3中的provide、inject怎么使用
下一篇
Vue3中的provide、inject怎么使用
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    144次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    170次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    160次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    145次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    174次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码