怎么使用python进行图像边缘检测
一分耕耘,一分收获!既然打开了这篇文章《怎么使用python进行图像边缘检测》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!
边缘检测
图像边缘是指图像中表达物体的周围像素灰度发生阶跃变化的那些像素集合。
图像中两个灰度不同的相邻区域的交界处,必然存在灰度的快速过渡或称为跳变,它们与图像中各区域边缘的位置相对应,边缘蕴含了丰富的内在信息,如方向、阶跃性质、形状等,沿边缘走向的像素变化平缓,而垂直于边缘方向的像素变化剧烈。
图像的大部分信息都集中在边缘部分,边缘确定后实际上就实现了不同区域的分割。
边缘检测算子
求取边缘往往要借助一些边缘检测算子,这些算子有的是基于一阶导数的算子,有的是二阶微分算子
Roberts算子、Prewitt算子、Sobel算子它们包含x、y两个方向的模板,每种模板只对相应的方向敏感,对该方向上的方向有明显的输出,而对其他方向的变化响应不大。以下是一些常见的一阶微分算子及其特点:
| 算子名称 | 特点 |
|---|---|
| 简单微分算子 | 对噪声敏感,对噪声具有一定放大作用 |
| Roberts算子 | 去噪声作用小,边缘检测能力优于简单微分算子 |
| Prewitt算子 | 能够有效抑制噪声的影响,同时能够检测边缘点 |
| Sobel算子 | 得到的边缘较宽,噪声抑制效果更强 |
| Canny算子 | 检测的边缘位置准确且边缘较窄 |
1、Roberts算子

2、Prewitt算子

3、Sobel算子
Sobel算子检测到的边缘相比于Roberts算子的检测结果要连续一些,并且对于图像的细节检测能力更好,且Sobel边缘检测器引入了局部平均,对噪声的影响比较小,效果较好。

4、Canny算子
Canny得到的检测结果优于Roberts、Sobel算子的检测结果,边缘细节更丰富,边缘定位准确连续性较好,虚假边缘少且边缘均具有单像素宽度。
其算法实现具体分为以下4步:
用高斯滤波器平滑图像
用一阶偏导的有限差分来计算梯度的幅度和方向
对梯度幅值进行非极大值抑制
用双阈值算法检测和连接边缘
5、拉普拉斯算子
常见的二阶微分算子包括拉普拉斯算子,它是一种二阶导师算子,对图像中的噪声相当敏感,而且检测出的边缘常常是双像素宽,没有方向信息,所以拉普拉斯算子很少直接用于检测边缘,而主要用于已知边缘像素后,确定该像素是在图像的暗区还是明区。另外,一阶差分算子会在较宽范围内形成较大的梯度值,因此不能准确定位,而利用二阶差分算子的过零点可以精确定位边缘。
Laplace算子的噪声明显比Sobel算子的噪声大,但其边缘比Sobel要细很多,且Laplace变换作为二阶微分算子对噪声特别敏感,并且会产生双边沿,不能检测边缘方向。

效果实验
1、 Roberts边缘检测
Prewitt 算子代码:
Roberts_kernel_x = np.array([[-1, 0], [0, 1]], dtype=int) Roberts_kernel_y = np.array([[0, -1], [1, 0]], dtype=int)

2、Prewitt 边缘检测
Prewitt 算子代码:
Roberts_kernel_x = np.array([[-1, 0], [0, 1]], dtype=int) Roberts_kernel_y = np.array([[0, -1], [1, 0]], dtype=int)

3、Sobel边缘检测
Sobel函数:
edges = cv2.Sobel(img, -1, 1, 1)

4、Canny边缘检测
Canny函数:
edges = cv2.Canny(img, 5, 100)

5、Laplacian 边缘检测
Laplacian 函数:
edges = cv2.Laplacian(img, -1)

今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
WIN10系统怎么禁用服务的详细方法
- 上一篇
- WIN10系统怎么禁用服务的详细方法
- 下一篇
- net.Dialer#KeepAlive 和 http.Transport#IdleTimeout 之间有什么区别?
-
- 文章 · python教程 | 36分钟前 |
- Python调用srun性能分析与优化
- 263浏览 收藏
-
- 文章 · python教程 | 47分钟前 |
- Python指定文件路径的方法及技巧
- 362浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Pandas统计连续相同值并新增列技巧
- 297浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- DjangoQ对象使用技巧与优化方法
- 245浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Dagster数据流转与参数配置方法
- 211浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- OpenCV调整亮度技巧与方法
- 204浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python轻松生成九九乘法表并导出Excel
- 147浏览 收藏
-
- 文章 · python教程 | 2小时前 | 图像处理 Pillow Image.open() resize() save()
- Pillow库使用技巧与教程详解
- 467浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- Python代码审查与协作技巧分享
- 333浏览 收藏
-
- 文章 · python教程 | 2小时前 |
- 彻底卸载WindowsPython方法详解
- 365浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3211次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3425次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3454次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4563次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3832次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览

