详解Go内存模型
本篇文章向大家介绍《详解Go内存模型》,主要包括内存模型,具有一定的参考价值,需要的朋友可以参考一下。
介绍
Go 内存模型规定了一些条件,在这些条件下,在一个 goroutine 中读取变量返回的值能够确保是另一个 goroutine 中对该变量写入的值。【翻译这篇文章花费了我 3 个半小时 】
Happens Before(在…之前发生)
在一个 goroutine 中,读操作和写操作必须表现地就好像它们是按照程序中指定的顺序执行的。这是因为,在一个 goroutine 中编译器和处理器可能重新安排读和写操作的执行顺序(只要这种乱序执行不改变这个 goroutine 中在语言规范中定义的行为)。
因为乱序执行的存在,一个 goroutine 观察到的执行顺序可能与另一个 goroutine 观察到的执行顺序不同。 比如,如果一个 goroutine 执行a = 1; b = 2;,另一个 goroutine 可能观察到 b 的值在 a 之前更新。
为了规定读取和写入的必要条件,我们定义了 happens before (在…之前发生),一个在 Go 程序中执行内存操作的部分顺序。如果事件 e1 发生在事件 e2 之前,那么我们说 e2 发生在 e1 之后。同样,如果 e1 不在 e2 之前发生也不在 e2 之后发生,那么我们说 e1 和 e2 同时发生。
在一个单独的 goroutine 中,happens-before 顺序就是在程序中的顺序。
一个对变量 v 的 读操作 r 可以被允许观察到一个对 v 的写操作 w,如果下列条件同时满足:
r 不在 w 之前发生在 w 之后,r 之前,没有其他对 v 的写入操作 w' 发生。
为了确保一个对变量 v 的读操作 r 观察到一个对 v 的 写操作 w,必须确保 w 是唯一的 r 允许的写操作。就是说下列条件必须同时满足:
w 在 r 之前发生任何其他对共享的变量 v 的写操作发生在 w 之前或 r 之后。
这两个条件比前面两个条件要严格,它要求不能有另外的写操作与 w 或 r 同时发生。
在一个单独的 goroutine 中,没有并发存在,所以这两种定义是等价的:一个读操作 r 观察到的是最近对 v 的写入操作 w 。当多个 goroutine 访问一个共享的变量 v 时,它们必须使用同步的事件来建立 happens-before 条件来确保读操作观察到预期的写操作。
在内存模型中,使用零值初始化一个变量的 v 的行为和写操作的行为一样。
读取和写入超过单个机器字【32 位或 64 位】大小的值的行为和多个无序地操作单个机器字的行为一样。
同步
初始化
程序初始化操作在一个单独的 goroutine 中运行,但是这个 goroutine 可能创建其他并发执行的 goroutines。
如果包 p 导入了包 q,那么 q 的 init 函数执行完成发生在 p 的任何 init 函数执行之前。
函数 main.main【也就是 main 函数】 的执行发生在所有的 init 函数完成之后。
Goroutine 创建
启动一个新的 goroutine 的 go 语句的执行在这个 goroutine 开始执行前发生。
比如,在这个程序中:
var a string
func f() {
print(a) // 后
}
func hello() {
a = "hello, world"
go f() // 先
}
调用 hello 函数将会在之后的某个事件点打印出 “hello, world”。【因为 a = “hello, world” 语句在 go f() 语句之前执行,而 goroutine 执行的函数 f 在 go f() 语句之后执行,a 的值已经初始化了 】
Goroutine 销毁
goroutine 的退出不保证发生在程序中的任何事件之前。比如,在这个程序中:
var a string
func hello() {
go func() { a = "hello" }()
print(a)
}
a 的赋值之后没有跟随任何同步事件,所以不能保证其他的 goroutine 能够观察到赋值操作。事实上,一个激进的编译器可能删除掉整个 go 语句。
如果在一个 goroutine 中赋值的效果必须被另一个 goroutine 观察到,那么使用锁或者管道通信这样的同步机制来建立一个相对的顺序。
管道通信
管道通信是在 goroutine 间同步的主要方法。一个管道的发送操作匹配【对应】一个管道的接收操作(通常在另一个 goroutine 中)。
一个在有缓冲的管道上的发送操作在相应的接收操作完成之前发生。
这个程序:
var c = make(chan int, 10) // 有缓冲的管道
var a string
func f() {
a = "hello, world"
c
<p>能够确保输出 “hello, world”。因为对 a 的赋值操作在发送操作前完成,而接收操作在发送操作之后完成。</p>
<p>关闭一个管道发生在从管道接收一个零值之前。</p>
<p>在之前的例子中,将 <code>c 语句替换成 <code>close(c)</code> 效果是一样的。</code></p>
<p>一个在无缓冲的管道上的接收操作在相应的发送操作完成之前发生。</p>
<p>这个程序 (和上面一样,使用无缓冲的管道,调换了发送和接收操作):</p>
<pre class="brush:plain;">
var c = make(chan int) // 无缓冲的管道
var a string
func f() {
a = "hello, world"
<p>也会确保输出 “hello, world”。</p>
<p>如果管道是由缓冲的 (比如, <code>c = make(chan int, 1)</code>)那么程序不能够确保输出 <code>"hello, world"</code>. (它可能会打印出空字符串、或者崩溃、或者做其他的事)</p>
<p>在一个容量为 C 的管道上的第 k 个接收操作在第 k+C 个发送操作完成之前发生。</p>
<p>该规则将前一个规则推广到带缓冲的管道。它允许使用带缓冲的管道实现计数信号量模型:管道中的元素数量对应于正在被使用的数量【信号量的计数】,管道的容量对应于同时使用的最大数量,发送一个元素获取信号量,接收一个元素释放信号量。这是一个限制并发的常见用法。</p>
<p>下面的程序对工作列表中的每一项启动一个 goroutine 处理,但是使用 <code>limit</code> 管道来确保同一时间内只有 3 个工作函数在运行。</p>
<pre class="brush:plain;">
var limit = make(chan int, 3)
func main() {
for _, w := range work {
go func(w func()) {
limit
<p><strong>锁</strong></p>
<p><code>sync</code> 包实现了两个锁数据类型,<code>sync.Mutex</code> 和 <code>sync.RWMutex</code> 。</p>
<p>对任何 <code>sync.Mutex</code> 或 <code>sync.RWMutex</code> 类型的变量 <code>l</code> 和 <em>n</em> m,第 n 个<code>l.Unlock()</code>操作在第 m 个 <code>l.Lock()</code> 操作返回之前发生。</p>
<p>这个程序:</p>
<pre class="brush:plain;">
var l sync.Mutex
var a string
func f() {
a = "hello, world"
l.Unlock() // 第一个 Unlock 操作,先
}
func main() {
l.Lock()
go f()
l.Lock() // 第二个 Lock 操作,后
print(a)
}
保证会打印出"hello, world"。
Once
sync 包提供了 Once 类型,为存在多个 goroutine 时的初始化提供了一种安全的机制。多个线程可以为特定的 f 执行一次 once.Do(f),但是只有一个会运行 f(),其他的调用将会阻塞直到 f() 返回。
一个从 once.Do(f) 调用的 f()的返回在任何 once.Do(f) 返回之前发生。
在这个程序中:
var a string
var once sync.Once
func setup() {
a = "hello, world" // 先
}
func doprint() {
once.Do(setup)
print(a) // 后
}
func twoprint() {
go doprint()
go doprint()
}
调用 twoprint 只会调用 setup 一次。setup 函数在调用 print 函数之前完成。结果将会打印两次"hello, world"。
不正确的同步
注意到一个读操作 r 可能观察到与它同时发生的写操作w 写入的值。当这种情况发生时,那也不能确保在 r 之后发生的读操作能够观察到在 w 之前发生的写操作。
在这个程序中:
var a, b int
func f() {
a = 1
b = 2
}
func g() {
print(b)
print(a)
}
func main() {
go f()
g()
}
可能会发生函数 g 输出 2 然后 0 的情况。【b 的值输出为2,说明已经观察到了 b 的写入操作。但是之后读取 a 的值却为 0,说明没有观察到 b 写入之前的 a 写入操作!不能以为 b 的值是 2,那么 a 的值就一定是 1 !】
这个事实使一些常见的处理逻辑无效。
比如,为了避免锁带来的开销,twoprint 那个程序可能会被不正确地写成:
var a string
var done bool
func setup() {
a = "hello, world"
done = true
}
func doprint() {
if !done { // 不正确!
once.Do(setup)
}
print(a)
}
func twoprint() {
go doprint()
go doprint()
}
这样写不能保证在 doprint 中观察到了对 done 的写入。这个版本可能会不正确地输出空串。
另一个不正确的代码逻辑是循环等待一个值改变:
var a string
var done bool
func setup() {
a = "hello, world"
done = true
}
func main() {
go setup()
for !done { // 不正确!
}
print(a)
}
和之前一样,在 main 中,观察到了对 done 的写入并不意味着观察到了对 a 的写入,所以这个程序可能也会打印一个空串。更糟糕的是,不能够保证对 done 的写入会被 main 观察到,因为两个线程间没有同步事件。 在 main 中的循环不能确保会完成。
类似的程序如下:
type T struct {
msg string
}
var g *T
func setup() {
t := new(T)
t.msg = "hello, world"
g = t
}
func main() {
go setup()
for g == nil { // 不正确
}
print(g.msg)
}
即使 main 观察到了 g != nil,退出了循环,也不能确保它观察到了 g.msg 的初始值。
在所有这些例子中,解决方法都是相同的:使用显示地同步。
本篇关于《详解Go内存模型》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于Golang的相关知识,请关注golang学习网公众号!
golang语言如何将interface转为int, string,slice,struct等类型
- 上一篇
- golang语言如何将interface转为int, string,slice,struct等类型
- 下一篇
- go版tensorflow安装教程详解
-
- Golang · Go教程 | 2分钟前 |
- 使用Gomock模拟返回值,实现精准单元测试
- 129浏览 收藏
-
- Golang · Go教程 | 12分钟前 |
- 高级语言转C/C++:内存与运行时问题解析
- 327浏览 收藏
-
- Golang · Go教程 | 15分钟前 |
- MongoDB查询为空?BSON配置全解析
- 464浏览 收藏
-
- Golang · Go教程 | 24分钟前 |
- Go高效处理CassandraSet类型技巧
- 306浏览 收藏
-
- Golang · Go教程 | 30分钟前 |
- Go中安全输出JSON不转义方法
- 279浏览 收藏
-
- Golang · Go教程 | 36分钟前 |
- Golang门面模式应用与子系统简化技巧
- 137浏览 收藏
-
- Golang · Go教程 | 42分钟前 |
- Go中日期时间字段处理技巧
- 450浏览 收藏
-
- Golang · Go教程 | 42分钟前 |
- GolangRPC序列化优化方法
- 334浏览 收藏
-
- Golang · Go教程 | 55分钟前 | golang 编码 csv 流式处理 encoding/csv
- GolangCSV读写解析教程详解
- 244浏览 收藏
-
- Golang · Go教程 | 57分钟前 |
- Go语言CSV字段强制引号设置教程
- 369浏览 收藏
-
- Golang · Go教程 | 59分钟前 | golang 重试机制 指数退避 context.Context 系统健壮性
- Golang实现指数退避重试机制
- 477浏览 收藏
-
- Golang · Go教程 | 1小时前 |
- Golangreflect调用私有方法详解
- 343浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3178次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3390次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3418次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4523次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3797次使用
-
- Go语言开发必知的一个内存模型细节
- 2023-01-21 316浏览

