当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数

巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数

来源:51CTO.COM 2024-03-30 23:03:34 0浏览 收藏

欢迎各位小伙伴来到golang学习网,相聚于此都是缘哈哈哈!今天我给大家带来《巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数》,这篇文章主要讲到等等知识,如果你对科技周边相关的知识非常感兴趣或者正在自学,都可以关注我,我会持续更新相关文章!当然,有什么建议也欢迎在评论留言提出!一起学习!

传统的时空预测模型通常需要大量数据支持才能取得良好效果。

然而,由于不同城市发展水平的差异和数据收集政策的不一致,许多地区的时空数据(例如交通和人群流动数据)受到了限制。因此,在数据稀缺的情况下,模型的可迁移性变得尤为重要。

目前的研究主要依靠源城市的数据来训练模型,并将其应用于目标城市的数据,但这种方法通常需要复杂的匹配设计。如何实现源城市和目标城市之间更广泛的知识迁移仍然是一个具有挑战性的问题。

最近,预训练模型在自然语言处理和计算机视觉领域取得了重大进展。引入prompt(提示)技术缩小了微调和预训练之间的差距,使得先进的预训练模型能够更快速地适应新的任务。这种方法的优势在于减少了对繁琐微调的依赖,提高了模型的效率和灵活性。通过prompt技术,模型可以更好地理解用户的需求,并产生更准确的输出,从而为人们提供更好的体验和服务。这种创新性的方法正在推动人工智能技术的发展,为各行业带来了更多可能性和机遇。

巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数图片

论文链接:https://openreview.net/forum?id=QyFm3D3Tzi

开源代码及数据:https://github.com/tsinghua-fib-lab/GPD

最新发表在ICLR2024的清华大学电子工程系城市科学与计算研究中心的成果《Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation》引入了GPD(Generative Pre-Trained Diffusion)模型,成功实现了在数据稀疏场景下的时空学习。

这种方法利用生成神经网络的参数,将时空稀疏数据学习转化为扩散模型的生成式预训练问题。与传统方法不同,该方法不再需要提取可迁移特征或设计复杂的模式匹配策略,也无需为少样本场景学习一个良好的模型初始化。

相反,该方法通过在源城市的数据上进行预训练来学习有关神经网络参数优化的知识,然后根据提示生成适用于目标城市的神经网络模型。

这一方法的创新之处在于能够根据「prompt(提示)」生成定制的神经网络,有效地适应不同城市之间的数据分布和特征差异,实现巧妙的时空知识迁移。

该研究为解决城市计算中数据稀缺性问题提供了新的思路。该论文的数据和代码均已开源。

从数据分布到神经网络参数分布

巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数图 1:数据模式层面知识迁移 vs. 神经网络层面知识迁移

如图1(a)所示,传统的知识迁移方法通常是在源城市的数据上训练模型,然后将其应用于目标城市。然而,不同城市之间的数据分布可能存在显著差异,这导致直接迁移源城市模型可能无法很好地适应目标城市的数据分布。

因此,我们需要摆脱对杂乱数据分布的依赖,寻求一种更本质、更可迁移的知识共享方式。与数据分布相比,神经网络参数的分布更具有“高阶”的特性。

图 1 展示了从数据模式层面到神经网络层面知识迁移的转变过程。通过在源城市的数据上训练神经网络,并将其转化为生成适应目标城市的神经网络参数的过程,可以更好地适应目标城市的数据分布和特征。

预训练+提示微调:实现时空少样本学习

巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数图2 GPD模型概览

如图2所示,该研究提出的GPD是一种条件生成框架,旨在直接从源城市的模型参数中学习,并为目标城市生成新的模型参数,该方法包括三个关键阶段:

1. 神经网络准备阶段:首先,针对每个源城市区域,该研究训练单独的时空预测模型,并保存其优化后的网络参数。每个区域的模型参数都经过独立优化,没有参数共享,以确保模型能够最大程度地适应各自区域的特征。

2. 扩散模型预训练:该框架使用收集到的预训练模型参数作为训练数据,训练扩散模型来学习生成模型参数的过程。扩散模型通过逐步去噪来生成参数,这个过程类似于从随机初始化开始的参数优化过程,因此能够更好地适应目标城市的数据分布。

3. 神经网络参数生成:在预训练后,可以通过使用目标城市的区域提示来生成参数。这种方法利用提示促进了知识转移和精确参数匹配,充分利用了城市间区域之间的相似性。

值得注意的是,在预训练-提示微调的框架中,提示的选择具有很高的灵活性,只要能够捕捉特定区域的特征即可。例如可以利用各种静态特征,如人口、区域面积、功能和兴趣点(POI)的分布等来实现这一目的。

这项工作从空间和时间两个方面利用区域提示:空间提示来自于城市知识图谱[1,2]中节点表征,它仅利用区域邻接性和功能相似性等关系,这些关系在所有城市中都很容易获取;时间提示来自于自监督学习模型的编码器。更多关于提示设计的细节请参见原文。

此外,该研究还探索了不同的提示引入方法,实验验证了基于先验知识的提示引入具有最优性能:用空间提示引导建模空间关联的神经网络参数生成,用时间提示引导时序神经网络参数生成。

实验结果

团队在论文中详细描述了实验设置,以帮助其他研究者复现其结果。他们还提供了原论文和开源数据代码,我们在这里关注其实验结果。

为了评估所提框架的有效性,该研究在两类经典的时空预测任务上进行了实验:人群流动预测和交通速度预测,覆盖了多个城市的数据集。

巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数图片

表1展示了在四个数据集上相对于最先进基线方法的比较结果。根据这些结果,可以得出以下观察:

1)GPD相对于基线模型表现出显著的性能优势,在不同数据场景下一致表现优越,这表明GPD实现了有效的神经网络参数层面的知识迁移。

2)GPD在长期预测场景中表现出色,这一显著趋势可以归因于该框架对于更本质知识的挖掘,有助于将长期时空模式知识迁移到目标城市。

巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数图3 不同时空预测模型的性能对比

此外,该研究还验证了GPD框架对于不同时空预测模型适配的灵活性。除了经典的时空图方法STGCN外,该研究还引入了GWN和STID作为时空预测模型,并使用扩散模型生成其网络参数。

实验结果表明,框架的优越性不会受到模型选择的影响,因此可以适配各种先进的模型。

进一步地,该研究通过在两个合成数据集上操纵模式相似性进行案例分析。

图4展示了区域A和B具有高度相似的时间序列模式,而区域C展示了明显不同的模式。同时,图5显示节点A和B具有对称的空间位置。

因此,我们可以推断区域A和B具有非常相似的时空模式,而与C有着明显的差异。模型生成的神经网络参数分布结果显示,A和B的参数分布相似,而与C的参数分布有显著差异。这进一步验证了GPD框架在有效生成具有多样化时空模式的神经网络参数的能力。

巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数

图 4 不同区域的时间序列及神经网络参数分布可视化

巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数

图 5 仿真数据集区域空间连接关系

参考资料:

https://github.com/tsinghua-fib-lab/GPD

[1] Liu, Yu, et al. "Urbankg: An urban knowledge graph system." ACM Transactions on Intelligent Systems and Technology 14.4 (2023): 1-25.

[2] Zhou, Zhilun, et al. "Hierarchical knowledge graph learning enabled socioeconomic indicator prediction in location-based social network." Proceedings of the ACM Web Conference 2023. 2023.

文中关于模型,神经网络,gpd的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《巧解「数据稀缺」问题!清华开源GPD:用扩散模型生成神经网络参数》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
Vue 中使用 mixin 实现国际化和用户权限管理的技巧Vue 中使用 mixin 实现国际化和用户权限管理的技巧
上一篇
Vue 中使用 mixin 实现国际化和用户权限管理的技巧
使用 Go 语言实现高效的数据加密和解密
下一篇
使用 Go 语言实现高效的数据加密和解密
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    29次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    43次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    40次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    51次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    43次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码