当前位置:首页 > 文章列表 > Golang > Go教程 > Go语言模型:string的底层数据结构与高效操作详解

Go语言模型:string的底层数据结构与高效操作详解

来源:脚本之家 2023-01-07 12:07:55 0浏览 收藏

对于一个Golang开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《Go语言模型:string的底层数据结构与高效操作详解》,主要介绍了String、底层,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!

Golang的string类型底层数据结构简单,本质也是一个结构体实例,且是const不可变。

string的底层数据结构

通过下面一个例子来看:

package main
import (
	"fmt"
	"unsafe"
)
// from: string.go 在GoLand IDE中双击shift快速找到
type stringStruct struct {
	array unsafe.Pointer // 指向一个 [len]byte 的数组
	length int    // 长度
}
func main() {
	test := "hello"
	p := (*str)(unsafe.Pointer(&test))
	fmt.Println(&p, p) // 0xc420070018 &{0xa3f71 5}
	c := make([]byte, p.length)
	for i := 0; i  string, "hello"
	test2 := test + " world" // 字符串是不可变类型,会生成一个新的string实例
	p2 := (*str)(unsafe.Pointer(&test2))
	fmt.Println(&p2, p2) // 0xc420028030 &{0xc42000a2e5 11}
	fmt.Println(test2) // hello, world
}

string的拼接与修改

+操作

string类型是一个不可变类型,那么任何对string的修改都会新生成一个string的实例,如果是考虑效率的场景就要好好考虑一下如何修改了。先说一下最长用的+操作,同样上面的例子,看一下+操作拼接字符串的反汇编:

25		test2 := test + " world"
 0x00000000004824d7 :	lea 0x105a2(%rip),%rax  # 0x492a80
 0x00000000004824de :	mov %rax,(%rsp)
 0x00000000004824e2 :	callq 0x40dda0  # 调用newobject函数
 0x00000000004824e7 :	mov 0x8(%rsp),%rax
 0x00000000004824ec :	mov %rax,0xa0(%rsp)
 0x00000000004824f4 :	mov 0xa8(%rsp),%rax
 0x00000000004824fc :	mov 0x8(%rax),%rcx
 0x0000000000482500 :	mov (%rax),%rax
 0x0000000000482503 :	mov %rax,0x8(%rsp)
 0x0000000000482508 :	mov %rcx,0x10(%rsp)
 0x000000000048250d :	movq $0x0,(%rsp)
 0x0000000000482515 :	lea 0x30060(%rip),%rax  # 0x4b257c
 0x000000000048251c :	mov %rax,0x18(%rsp)
 0x0000000000482521 :	movq $0x6,0x20(%rsp)
 0x000000000048252a :	callq 0x43cc00  # 调用concatstring2函数

因为当前go[2018.11 version: go1.11]的不是遵循默认的x86 calling convention用寄存器传参,而是通过stack进行传参,所以go的反汇编不像c的那么容易理解,不过大概看懂+背后的操作还是没问题的,看一下runtime源码的拼接函数:

func concatstring2(buf *tmpBuf, a [2]string) string {
 return concatstrings(buf, a[:])
}
// concatstrings implements a Go string concatenation x+y+z+...
// The operands are passed in the slice a.
// If buf != nil, the compiler has determined that the result does not
// escape the calling function, so the string data can be stored in buf
// if small enough.
func concatstrings(buf *tmpBuf, a []string) string {
 idx := 0
 l := 0
 count := 0
 for i, x := range a {
  n := len(x)
  if n == 0 {
   continue
  }
  if l+n 

分析runtime的concatstrings实现,可以看出+最后新申请buf,拷贝原来的string到buf,最后返回新实例。那么每次的+操作,都会涉及新申请buf,然后是对应的copy。如果反复使用+,就不可避免有大量的申请内存操作,对于大量的拼接,性能就会受到影响了。

bytes.Buffer

通过看源码,bytes.Buffer 增长buffer时是按照2倍来增长内存,可以有效避免频繁的申请内存,通过一个例子来看:

func main() {
 var buf bytes.Buffer
 for i := 0; i 

对应的byte包库函数源码

// @file: buffer.go
func (b *Buffer) WriteString(s string) (n int, err error) {
 b.lastRead = opInvalid
 m, ok := b.tryGrowByReslice(len(s))
 if !ok {
  m = b.grow(len(s)) // 高效的增长策略 -> let capacity get twice as large
 }
 return copy(b.buf[m:], s), nil
}
// @file: buffer.go
// let capacity get twice as large !!!
func (b *Buffer) grow(n int) int {
 m := b.Len()
 // If buffer is empty, reset to recover space.
 if m == 0 && b.off != 0 {
  b.Reset()
 }
 // Try to grow by means of a reslice.
 if i, ok := b.tryGrowByReslice(n); ok {
  return i
 }
 // Check if we can make use of bootstrap array.
 if b.buf == nil && n  maxInt-c-n {
  panic(ErrTooLarge)
 } else {
  // Not enough space anywhere, we need to allocate.
  buf := makeSlice(2*c + n)
  copy(buf, b.buf[b.off:])
  b.buf = buf
 }
 // Restore b.off and len(b.buf).
 b.off = 0
 b.buf = b.buf[:m+n]
 return m
}

string.join

这个函数可以一次申请最终string的大小,但是使用得预先准备好所有string,这种场景也是高效的,一个例子:

func main() {
 var strs []string
 for i := 0; i 

对应库的源码:

// Join concatenates the elements of a to create a single string. The separator string
// sep is placed between elements in the resulting string.
func Join(a []string, sep string) string {
 switch len(a) {
 case 0:
  return ""
 case 1:
  return a[0]
 case 2:
  // Special case for common small values.
  // Remove if golang.org/issue/6714 is fixed
  return a[0] + sep + a[1]
 case 3:
  // Special case for common small values.
  // Remove if golang.org/issue/6714 is fixed
  return a[0] + sep + a[1] + sep + a[2]
 }
 
 // 计算好最终的string的大小
 n := len(sep) * (len(a) - 1) //
 for i := 0; i 

strings.Builder (go1.10+)

看到这个名字,就想到了Java的库,哈哈,这个Builder用起来是最方便的,不过是在1.10后引入的。其高效也是体现在2倍速的内存增长, WriteString函数利用了slice类型对应append函数的2倍速增长。

一个例子:

func main() {
 var s strings.Builder
 for i := 0; i 

对应库的源码

@file: builder.go
// WriteString appends the contents of s to b's buffer.
// It returns the length of s and a nil error.
func (b *Builder) WriteString(s string) (int, error) {
 b.copyCheck()
 b.buf = append(b.buf, s...)
 return len(s), nil
}

总结

Golang的字符串处理还是挺方便的,有垃圾回收和一些内置的语言级写法支持,让复杂字符串操作没有那么繁琐了,比起C/C++高效了不少。

补充:go string的内部实现

go string 内部实现

这个string的探索

来来个例子

func boo(a int, b int)(int, string){
 return a + b, "abcd"
}
81079 000000000044dfa0 :
81080 44dfa0:>------48 c7 44 24 18 00 00 >--movq $0x0,0x18(%rsp)
81081 44dfa7:>------00 00- 
81082 44dfa9:>------0f 57 c0    >--xorps %xmm0,%xmm0
81083 44dfac:>------0f 11 44 24 20  >--movups %xmm0,0x20(%rsp)
81084 44dfb1:>------48 8b 44 24 08  >--mov 0x8(%rsp),%rax
81085 44dfb6:>------48 03 44 24 10  >--add 0x10(%rsp),%rax
81086 44dfbb:>------48 89 44 24 18  >--mov %rax,0x18(%rsp)
81087 44dfc0:>------48 8d 05 d4 eb 01 00 >--lea 0x1ebd4(%rip),%rax  # 46cb9b 
81088 44dfc7:>------48 89 44 24 20  >--mov %rax,0x20(%rsp)
81089 44dfcc:>------48 c7 44 24 28 04 00 >--movq $0x4,0x28(%rsp)
81090 44dfd3:>------00 00- 
81091 44dfd5:>------c3     >--retq---

其中

81087 44dfc0:>------48 8d 05 d4 eb 01 00 >--lea 0x1ebd4(%rip),%rax  # 46cb9b 
81088 44dfc7:>------48 89 44 24 20  >--mov %rax,0x20(%rsp)
81089 44dfcc:>------48 c7 44 24 28 04 00 >--movq $0x4,0x28(%rsp)
81090 44dfd3:>------00 00- 
81091 44dfd5:>------c3     >--retq---
lea 0x1ebd4(%rip),%rax得到char*, mov %rax,0x20(%rsp)复制给返回值, movq $0x4,0x28(%rsp)把长度也填进去,

其实可以看到string就是c里面的char* 和len的组合

以上为个人经验,希望能给大家一个参考,也希望大家多多支持golang学习网。如有错误或未考虑完全的地方,望不吝赐教。

到这里,我们也就讲完了《Go语言模型:string的底层数据结构与高效操作详解》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于golang的知识点!

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
go 迭代string数组操作 go for string[]go 迭代string数组操作 go for string[]
上一篇
go 迭代string数组操作 go for string[]
golang 字符串拼接性能的对比分析
下一篇
golang 字符串拼接性能的对比分析
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    14次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    22次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    30次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    40次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    35次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码