当前位置:首页 > 文章列表 > 文章 > python教程 > 基于Python的Web爬虫技术详解

基于Python的Web爬虫技术详解

2024-03-29 17:13:33 0浏览 收藏

一分耕耘,一分收获!既然打开了这篇文章《基于Python的Web爬虫技术详解》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!

随着互联网和大数据时代的到来,越来越多的数据被动态生成并呈现在网页中,这就为数据采集和处理带来了新的挑战。这时候Web爬虫技术就应运而生。Web爬虫技术是指通过编写程序自动获取互联网上的信息的技术。Python作为一种强大的编程语言,具有简单易学、高效易用、跨平台等优点,已经成为Web爬虫开发中的一种重要选择。

本文将系统地介绍Python中常用的Web爬虫技术,包括请求模块、解析模块、存储模块等方面。

一、请求模块

请求模块是Web爬虫的核心,它可以模拟浏览器发送请求,获取需要的页面内容。常用的请求模块有urllib、Requests和Selenium。

  1. urllib

urllib是Python自带的一个HTTP请求模块,可以根据URL从网络上获取网页数据,支持URL编码、修改请求头、post、cookie等功能。常用的函数有urllib.request.urlopen()、urllib.request.urlretrieve()、urllib.request.build_opener()等。

通过urllib.request.urlopen()函数可以得到网站的源代码:

import urllib.request

response = urllib.request.urlopen('http://www.example.com/')
source_code = response.read().decode('utf-8')
print(source_code)
  1. Requests

Requests是一个Python第三方库,它比urllib更简单易用,支持cookie、POST、代理等功能。常用的函数有requests.get()、requests.post()、requests.request()等。

通过requests.get()函数可以得到响应的内容:

import requests

response = requests.get('http://www.example.com/')
source_code = response.text
print(source_code)
  1. Selenium

Selenium是一个自动化测试工具,在Web爬虫中,它可以通过启动一个浏览器来模拟人的操作,能够实现获取JS动态生成的页面数据等功能。常用的函数有selenium.webdriver.Chrome()、selenium.webdriver.Firefox()、selenium.webdriver.PhantomJS()等。

通过Selenium获取网页源代码:

from selenium import webdriver

browser = webdriver.Chrome()  # 打开Chrome浏览器
browser.get('http://www.example.com/')
source_code = browser.page_source  # 获取网页源代码
print(source_code)

二、解析模块

得到网页源代码后,下一步就是解析这个文件了。Python中常用的解析模块有正则表达式、BeautifulSoup和PyQuery。

  1. 正则表达式

正则表达式是一个神奇而强大的工具,它可以按照模式匹配字符串,可以快速提取出所需要的数据。Python中可以使用re模块来调用正则表达式。

例如,提取出网页中的所有链接:

import re

source_code = """



    Example


    example
    google


"""

pattern = re.compile('(.*?)')  # 匹配所有链接
results = re.findall(pattern, source_code)

for result in results:
    print(result[0], result[1])
  1. BeautifulSoup

Beautiful Soup是Python的一个库,它可以将HTML文件或XML文件解析成树形结构,从而方便地获取HTML/XML文件中的数据。它支持多种解析器,常用的有Python内置的html.parser、lxml和html5lib。

例如,解析出网页中的所有链接:

from bs4 import BeautifulSoup

source_code = """



    Example


    example
    google


"""

soup = BeautifulSoup(source_code, 'html.parser')
links = soup.find_all('a')

for link in links:
    print(link.get('href'), link.string)
  1. PyQuery

PyQuery是一个类似jQuery的Python库,它将HTML文档转换成类似jQuery的结构,可以通过CSS选择器直接获取网页中的元素。它依赖于lxml库。

例如,解析出网页中的所有链接:

from pyquery import PyQuery as pq

source_code = """



    Example


    example
    google


"""

doc = pq(source_code)
links = doc('a')

for link in links:
    print(link.attrib['href'], link.text_content())

三、存储模块

得到所需要的数据后,下一步就是将数据存储到本地或数据库中。Python中常用的存储模块有文件模块、MySQLdb、pymongo等。

  1. 文件模块

文件模块可以将数据存储到本地,常用的文件模块有CSV、JSON、Excel等。其中,CSV模块是最常用的文件模块之一,它可以将数据写入到CSV文件中。

例如,将数据写入到CSV文件中:

import csv

filename = 'example.csv'
data = [['name', 'age', 'gender'],
        ['bob', 25, 'male'],
        ['alice', 22, 'female']]

with open(filename, 'w', encoding='utf-8', newline='') as f:
    writer = csv.writer(f)
    for row in data:
        writer.writerow(row)
  1. MySQLdb

MySQLdb是Python链接MySQL数据库的一个库,它支持事务、游标等多种功能。

例如,将数据存储到MySQL数据库中:

import MySQLdb

conn = MySQLdb.connect(host='localhost', port=3306, user='root', 
                       passwd='password', db='example', charset='utf8')
cursor = conn.cursor()

data = [('bob', 25, 'male'), ('alice', 22, 'female')]

sql = "INSERT INTO users (name, age, gender) VALUES (%s, %s, %s)"

try:
    cursor.executemany(sql, data)
    conn.commit()
except:
    conn.rollback()

cursor.close()
conn.close()
  1. pymongo

pymongo是Python链接MongoDB数据库的一个库,它支持多种操作,如增删改查等。

例如,将数据存储到MongoDB数据库中:

import pymongo

client = pymongo.MongoClient('mongodb://localhost:27017/')
db = client['example']
collection = db['users']

data = [{'name': 'bob', 'age': 25, 'gender': 'male'}, 
        {'name': 'alice', 'age': 22, 'gender': 'female'}]

collection.insert_many(data)

四、总结

Python中的Web爬虫技术包括请求模块、解析模块和存储模块等方面,其中,请求模块是Web爬虫的核心,解析模块是获取数据的重要渠道,存储模块是将数据持久化的必经之路。Python在Web爬虫开发中具有简单易学、高效易用、跨平台等优点,已成为Web爬虫开发中的一种重要选择。

文中关于Python,Web爬虫,技术详解的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《基于Python的Web爬虫技术详解》文章吧,也可关注golang学习网公众号了解相关技术文章。

如何使用PHP7.0实现一个分布式存储系统?如何使用PHP7.0实现一个分布式存储系统?
上一篇
如何使用PHP7.0实现一个分布式存储系统?
如何通过MySQL对ALTER TABLE优化来提高性能
下一篇
如何通过MySQL对ALTER TABLE优化来提高性能
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    28次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    42次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    39次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    51次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    42次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码