当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 扩散模型在时间序列分析中的综述

扩散模型在时间序列分析中的综述

来源:51CTO.COM 2024-03-28 14:24:07 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

在IT行业这个发展更新速度很快的行业,只有不停止的学习,才不会被行业所淘汰。如果你是科技周边学习者,那么本文《扩散模型在时间序列分析中的综述》就很适合你!本篇内容主要包括##content_title##,希望对大家的知识积累有所帮助,助力实战开发!

扩散模型是目前生成式AI中的最核心模块,在Sora、DALL-E、Imagen等生成式AI大模型中都取得了广泛的应用。与此同时,扩散模型也被越来越多的应用到了时间序列中。这篇文章给大家介绍了扩散模型的基本思路,以及几篇扩散模型用于时间序列的典型工作,带你理解扩散模型在时间序列中的应用原理。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

1.扩散模型建模思路

生成模型的核心是,能够从随机简单分布中采样一个点,并通过一系列变换将这个点映射到目标空间的图像或样本上。扩散模型的做法是,在采样的样本点上,不断的去噪声,经过多个去除噪声的步骤,生成最终的数据。这个过程很像雕塑的过程,最开始从高斯分布采样的噪声就是最开始的原材料,去噪声的过程就是不断在这个材料上凿掉多余部分的过程。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

上面所说的就是逆向过程,即从一个噪声中逐渐去掉噪声,得到图像。这个过程是一个迭代的过程,要经历T次的去噪,一点点从原始采样点中把噪声去掉。在每个步骤中,输入上一个步骤生成的结果,并且需要预测噪声,再用输入减去噪声,得到当前时间步的输出。

这里就需要训练一个预测当前步骤噪声的模块(去噪模块),这个模块输入当前的步骤t,以及当前步骤的输入,预测噪声是什么。这个预测噪声的模块,是通过正向过程进行的,和VAE中的Encoder部分比较像。在正向过程中,输入一个图像,每个步骤采样一个噪声,将噪声加到原始图像上,得到生成的结果。然后再以生成的结果和当前步骤t的embedding为输入,预测生成的噪声,以此达到训练去噪模块的作用。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

2.扩散模型在时间序列中的应用

TimeGrad: Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting(2021)

TimeGrad是最早采用扩散模型进行时间序列预测的方法之一。与传统扩散模型不同的是,TimeGrad在基础扩散模型的基础上引入了一个去噪模块,并为每个时间步额外提供了一个隐藏状态。这个隐藏状态是通过RNN模型对历史序列和外部变量进行编码得到的,用于指导扩散模型生成序列。总体逻辑如下图所示。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

在去噪模块的网络结构中,主要运用了卷积神经网络。输入信号分为两部分:第一部分是上一个步骤的输出序列,第二部分是RNN输出的隐藏状态,经过上采样后得到的结果。这两部分分别经过卷积处理后相加,用于噪声的预测。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation(2021)

这篇文章使用扩散模型建模时间序列填充任务,整体建模方式和TimeGrad比较像。如下图所示,最开始时间序列是有缺失值的,首先对其填充上噪声,然后使用扩散模型逐渐预测噪声实现去噪,经过多个步骤后最终得到填充结果。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

整个模型的核心也是扩散模型训练去噪模块。核心是训练噪声预测网络,每个步骤输入当前的步骤embedding、历史的观测结果以及上一个时刻的输出,预测噪声结果。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

网络结构上使用Transformer,包括时间维度上的Transformer和变量维度的Transformer两个部分。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

DSPD & CSPD: Modeling Temporal Data as Continuous Functions with Process Diffusion(2022)

本文提出的方法相比TimeGrad上升了一个层次,是通过扩散模型直接建模生成时间序列的函数本身。这里假设每一个观测点都是从一个函数中生成的,然后直接建模这个函数的分布,而不是建模时间序列中数据点的分布。因此,文中将扩散模型中添加的独立噪声改成随时间变化的噪声,并训练扩散模型中的去噪模块实现对函数的去噪。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

一文总结扩散模型(Diffusion Model)在时间序列中的应用

TDSTF: Transformer-based Diffusion probabilistic model for Sparse Time series Forecasting(2023)

这篇文章将扩散模型应用到ICU中的关键信号提取。文中的核心一方面是对于稀疏不规则的医疗时序数据的处理,使用value、feature、time三元组表示序列中的每个点,对确实值部分使用mask。另一方面是基于Transformer和扩散模型的预测方法。整体的扩散模型过程如图,跟图像的生成模型原理是类似的,根据历史的时间序列训练去噪模型,然后在前向传播中逐渐从初始噪声序列中减掉噪声。

一文总结扩散模型(Diffusion Model)在时间序列中的应用

具体的扩散模型中噪声预测的部分采用的是Transformer结构。每个时间点由mask以及三元组组成,输入到Transformer中,作为去噪模块预测噪声。详细结构包括3层Transformer,每个Transformer包括2层Encoder和2层Decoder网络,Decoder的输出使用残差网络连接,并输入到卷积Decoder生成噪声预测结果。

一文总结扩散模型(Diffusion Model)在时间序列中的应用


终于介绍完啦!小伙伴们,这篇关于《扩散模型在时间序列分析中的综述》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
PHP实际应用:企业微信接口接入实操指南PHP实际应用:企业微信接口接入实操指南
上一篇
PHP实际应用:企业微信接口接入实操指南
指导PHP中的MySQL操作
下一篇
指导PHP中的MySQL操作
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    543次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    516次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    500次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    485次学习
查看更多
AI推荐
  • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
    ChatExcel酷表
    ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
    3211次使用
  • Any绘本:开源免费AI绘本创作工具深度解析
    Any绘本
    探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
    3425次使用
  • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
    可赞AI
    可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
    3454次使用
  • 星月写作:AI网文创作神器,助力爆款小说速成
    星月写作
    星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
    4563次使用
  • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
    MagicLight
    MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
    3832次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码