go中控制goroutine数量的方法
IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《go中控制goroutine数量的方法》,聊聊goroutine、go控制、数量,我们一起来看看吧!
前言
goroutine被无限制的大量创建,造成的后果就不啰嗦了,主要讨论几种如何控制goroutine的方法
控制goroutine的数量
通过channel+sync
var (
// channel长度
poolCount = 5
// 复用的goroutine数量
goroutineCount = 10
)
func pool() {
jobsChan := make(chan int, poolCount)
// workers
var wg sync.WaitGroup
for i := 0; i
<p>通过WaitGroup启动指定数量的goroutine,监听channel的通知。发送者推送信息到channel,信息处理完了,关闭channel,等待goroutine依次退出。</p>
<h3>使用semaphore<br></h3>
<pre class="brush:plain;">
package main
import (
"context"
"fmt"
"sync"
"time"
"golang.org/x/sync/semaphore"
)
const (
// 同时运行的goroutine上限
Limit = 3
// 信号量的权重
Weight = 1
)
func main() {
names := []string{
"小白",
"小红",
"小明",
"小李",
"小花",
}
sem := semaphore.NewWeighted(Limit)
var w sync.WaitGroup
for _, name := range names {
w.Add(1)
go func(name string) {
sem.Acquire(context.Background(), Weight)
// ... 具体的业务逻辑
fmt.Println(name, "-吃饭了")
time.Sleep(2 * time.Second)
sem.Release(Weight)
w.Done()
}(name)
}
w.Wait()
fmt.Println("ending--------")
}
借助于x包中的semaphore,也可以进行goroutine的数量限制。
线程池
不过原本go中的协程已经是非常轻量了,对于协程池还是要根据具体的场景分析。
对于小场景使用channel+sync就可以,其他复杂的可以考虑使用第三方的协程池库。
几个开源的线程池的设计
fasthttp中的协程池实现
fasthttp比net/http效率高很多倍的重要原因,就是利用了协程池。来看下大佬的设计思路。
1、按需增长goroutine数量,有一个最大值,同时监听channel,Server会把accept到的connection放入到channel中,这样监听的goroutine就能处理消费。
2、本地维护了一个待使用的channel列表,当本地channel列表拿不到ch,会在sync.pool中取。
3、如果workersCount没达到上限,则从生成一个workerFunc监听workerChan。
4、对于待使用的channel列表,会定期清理掉超过最大空闲时间的workerChan。
看下具体实现
// workerPool通过一组工作池服务传入的连接
// 按照FILO(先进后出)的顺序,即最近停止的工作人员将为下一个工作传入的连接。
//
// 这种方案能够保持cpu的缓存保持高效(理论上)
type workerPool struct {
// 这个函数用于server的连接
// It must leave c unclosed.
WorkerFunc ServeHandler
// 最大的Workers数量
MaxWorkersCount int
LogAllErrors bool
MaxIdleWorkerDuration time.Duration
Logger Logger
lock sync.Mutex
// 当前worker的数量
workersCount int
// worker停止的标识
mustStop bool
// 等待使用的workerChan
// 可能会被清理
ready []*workerChan
// 用来标识start和stop
stopCh chan struct{}
// workerChan的缓存池,通过sync.Pool实现
workerChanPool sync.Pool
connState func(net.Conn, ConnState)
}
// workerChan的结构
type workerChan struct {
lastUseTime time.Time
ch chan net.Conn
}
Start
func (wp *workerPool) Start() {
// 判断是否已经Start过了
if wp.stopCh != nil {
panic("BUG: workerPool already started")
}
// stopCh塞入值
wp.stopCh = make(chan struct{})
stopCh := wp.stopCh
wp.workerChanPool.New = func() interface{} {
// 如果单核cpu则让workerChan阻塞
// 否则,使用非阻塞,workerChan的长度为1
return &workerChan{
ch: make(chan net.Conn, workerChanCap),
}
}
go func() {
var scratch []*workerChan
for {
wp.clean(&scratch)
select {
// 接收到退出信号,退出
case 1则使用非阻塞的workerChan
return 1
}()
梳理下流程:
1、首先判断下stopCh是否为nil,不为nil表示已经started了;
2、初始化wp.stopCh = make(chan struct{}),stopCh是一个标识,用了struct{}不用bool,因为空结构体变量的内存占用大小为0,而bool类型内存占用大小为1,这样可以更加最大化利用我们服务器的内存空间;
3、设置workerChanPool的New函数,然后可以在Get不到东西时,自动创建一个;如果单核cpu则让workerChan阻塞,否则,使用非阻塞,workerChan的长度设置为1;
4、启动一个goroutine,处理clean操作,在接收到退出信号,退出。
Stop
func (wp *workerPool) Stop() {
// 同start,stop也只能触发一次
if wp.stopCh == nil {
panic("BUG: workerPool wasn't started")
}
// 关闭stopCh
close(wp.stopCh)
// 将stopCh置为nil
wp.stopCh = nil
// 停止所有的等待获取连接的workers
// 正在运行的workers,不需要等待他们退出,他们会在完成connection或mustStop被设置成true退出
wp.lock.Lock()
ready := wp.ready
// 循环将ready的workerChan置为nil
for i := range ready {
ready[i].ch
<p>梳理下流程:</p>
<p>1、判断stop只能被关闭一次;</p>
<p>2、关闭stopCh,设置stopCh为nil;</p>
<p>3、停止所有的等待获取连接的workers,正在运行的workers,不需要等待他们退出,他们会在完成connection或mustStop被设置成true退出。</p>
<p><strong>clean</strong><br></p>
<pre class="brush:plain;">
func (wp *workerPool) clean(scratch *[]*workerChan) {
maxIdleWorkerDuration := wp.getMaxIdleWorkerDuration()
// 清理掉最近最少使用的workers如果他们过了maxIdleWorkerDuration时间没有提供服务
criticalTime := time.Now().Add(-maxIdleWorkerDuration)
wp.lock.Lock()
ready := wp.ready
n := len(ready)
// 使用二分搜索算法找出最近可以被清除的worker
// 最后使用的workerChan 一定是放回队列尾部的。
l, r, mid := 0, n-1, 0
for l
<p>主要是清理掉最近最少使用的workers如果他们过了maxIdleWorkerDuration时间没有提供服务</p>
<p><strong>getCh</strong><br></p>
<p>获取一个workerChan</p>
<pre class="brush:plain;">
func (wp *workerPool) getCh() *workerChan {
var ch *workerChan
createWorker := false
wp.lock.Lock()
ready := wp.ready
n := len(ready) - 1
// 如果ready为空
if n
<p>梳理下流程:</p>
<p>1、获取一个可执行的workerChan,如果ready中为空,并且workersCount没有达到最大值,增加workersCount数量,并且设置当前操作createWorker = true;</p>
<p>2、ready中不为空,直接在ready获取一个;</p>
<p>3、如果没有获取到则在sync.pool中获取一个,之后再放回到pool中;</p>
<p>4、拿到了就启动一个workerFunc监听workerChan,处理具体的业务逻辑。</p>
<p><strong>workerFunc</strong><br></p>
<pre class="brush:plain;">
func (wp *workerPool) workerFunc(ch *workerChan) {
var c net.Conn
var err error
// 监听workerChan
for c = range ch.ch {
if c == nil {
break
}
// 具体的业务逻辑
...
c = nil
// 释放workerChan
// 在mustStop的时候将会跳出循环
if !wp.release(ch) {
break
}
}
wp.lock.Lock()
wp.workersCount--
wp.lock.Unlock()
}
// 把Conn放入到channel中
func (wp *workerPool) Serve(c net.Conn) bool {
ch := wp.getCh()
if ch == nil {
return false
}
ch.ch
<p>梳理下流程:</p>
<p>1、workerFunc会监听workerChan,并且在使用完workerChan归还到ready中;</p>
<p>2、Serve会把connection放入到workerChan中,这样workerFunc就能通过workerChan拿到需要处理的连接请求;</p>
<p>3、当workerFunc拿到的workerChan为nil或wp.mustStop被设为了true,就跳出for循环。</p>
<p><strong>panjf2000/ants</strong><br></p>
<p>先看下示例</p>
<p>示例一</p>
<pre class="brush:plain;">
package main
import (
"fmt"
"sync"
"sync/atomic"
"time"
"github.com/panjf2000/ants"
)
func demoFunc() {
time.Sleep(10 * time.Millisecond)
fmt.Println("Hello World!")
}
func main() {
defer ants.Release()
runTimes := 1000
var wg sync.WaitGroup
syncCalculateSum := func() {
demoFunc()
wg.Done()
}
for i := 0; i
<p>示例二</p>
<pre class="brush:plain;">
package main
import (
"fmt"
"sync"
"sync/atomic"
"time"
"github.com/panjf2000/ants"
)
var sum int32
func myFunc(i interface{}) {
n := i.(int32)
atomic.AddInt32(&sum, n)
fmt.Printf("run with %d\n", n)
}
func main() {
var wg sync.WaitGroup
runTimes := 1000
// Use the pool with a method,
// set 10 to the capacity of goroutine pool and 1 second for expired duration.
p, _ := ants.NewPoolWithFunc(10, func(i interface{}) {
myFunc(i)
wg.Done()
})
defer p.Release()
// Submit tasks one by one.
for i := 0; i
<p><strong>设计思路</strong><br></p>
<p>整体的设计思路</p>
<p>梳理下思路:</p>
<p>1、先初始化缓存池的大小,然后处理任务事件的时候,一个task分配一个goWorker;</p>
<p>2、在拿goWorker的过程中会存在下面集中情况;</p>
- 本地的缓存中有空闲的goWorker,直接取出;
- 本地缓存没有就去sync.Pool,拿一个goWorker;
3、如果缓存池满了,非阻塞模式直接返回nil,阻塞模式就循环去拿直到成功拿出一个;
4、同时也会定期清理掉过期的goWorker,通过sync.Cond唤醒其的阻塞等待;
5、对于使用完成的goWorker在使用完成之后重新归还到pool。
具体的设计细节可参考,作者的文章Goroutine 并发调度模型深度解析之手撸一个高性能 goroutine 池
go-playground/pool
go-playground/pool会在一开始就启动
先放几个使用的demo
Per Unit Work
package main
import (
"fmt"
"time"
"gopkg.in/go-playground/pool.v3"
)
func main() {
p := pool.NewLimited(10)
defer p.Close()
user := p.Queue(getUser(13))
other := p.Queue(getOtherInfo(13))
user.Wait()
if err := user.Error(); err != nil {
// handle error
}
// do stuff with user
username := user.Value().(string)
fmt.Println(username)
other.Wait()
if err := other.Error(); err != nil {
// handle error
}
// do stuff with other
otherInfo := other.Value().(string)
fmt.Println(otherInfo)
}
func getUser(id int) pool.WorkFunc {
return func(wu pool.WorkUnit) (interface{}, error) {
// simulate waiting for something, like TCP connection to be established
// or connection from pool grabbed
time.Sleep(time.Second * 1)
if wu.IsCancelled() {
// return values not used
return nil, nil
}
// ready for processing...
return "Joeybloggs", nil
}
}
func getOtherInfo(id int) pool.WorkFunc {
return func(wu pool.WorkUnit) (interface{}, error) {
// simulate waiting for something, like TCP connection to be established
// or connection from pool grabbed
time.Sleep(time.Second * 1)
if wu.IsCancelled() {
// return values not used
return nil, nil
}
// ready for processing...
return "Other Info", nil
}
}
Batch Work
package main
import (
"fmt"
"time"
"gopkg.in/go-playground/pool.v3"
)
func main() {
p := pool.NewLimited(10)
defer p.Close()
batch := p.Batch()
// for max speed Queue in another goroutine
// but it is not required, just can't start reading results
// until all items are Queued.
go func() {
for i := 0; i
<p>来看下实现</p>
<p><strong>workUnit</strong><br></p>
<p>workUnit作为channel信息进行传递,用来给work传递当前需要执行的任务信息。</p>
<pre class="brush:plain;">
// WorkUnit contains a single uint of works values
type WorkUnit interface {
// 阻塞直到当前任务被完成或被取消
Wait()
// 执行函数返回的结果
Value() interface{}
// Error returns the Work Unit's error
Error() error
// 取消当前的可执行任务
Cancel()
// 判断当前的可执行单元是否被取消了
IsCancelled() bool
}
var _ WorkUnit = new(workUnit)
// workUnit contains a single unit of works values
type workUnit struct {
// 任务执行的结果
value interface{}
// 错误信息
err error
// 通知任务完成
done chan struct{}
// 需要执行的任务函数
fn WorkFunc
// 任务是会否被取消
cancelled atomic.Value
// 是否正在取消任务
cancelling atomic.Value
// 任务是否正在执行
writing atomic.Value
}
limitedPool
var _ Pool = new(limitedPool)
// limitedPool contains all information for a limited pool instance.
type limitedPool struct {
// 并发量
workers uint
// work的channel
work chan *workUnit
// 通知结束的channel
cancel chan struct{}
// 是否关闭的标识
closed bool
// 读写锁
m sync.RWMutex
}
// 初始化一个pool
func NewLimited(workers uint) Pool {
if workers == 0 {
panic("invalid workers '0'")
}
// 初始化pool的work数量
p := &limitedPool{
workers: workers,
}
// 初始化pool的操作
p.initialize()
return p
}
func (p *limitedPool) initialize() {
// channel的长度为work数量的两倍
p.work = make(chan *workUnit, p.workers*2)
p.cancel = make(chan struct{})
p.closed = false
// fire up workers here
for i := 0; i
<p>梳理下流程:</p>
<p>1、首先初始化pool的大小;</p>
<p>2、然后根据pool的大小启动对应数量的worker,阻塞等待channel被塞入可执行函数;</p>
<p>3、然后可执行函数会被放入workUnit,然后通过channel传递给阻塞的worker。</p>
<p>同样这里也提供了批量执行的方法</p>
<p><strong>batch</strong><br></p>
<pre class="brush:plain;">
// batch contains all information for a batch run of WorkUnits
type batch struct {
pool Pool
m sync.Mutex
// WorkUnit的切片
units []WorkUnit
// 结果集,执行完后的workUnit会更新其value,error,可以从结果集channel中读取
results chan WorkUnit
// 通知batch是否完成
done chan struct{}
closed bool
wg *sync.WaitGroup
}
// 初始化Batch
func newBatch(p Pool) Batch {
return &batch{
pool: p,
units: make([]WorkUnit, 0, 4),
results: make(chan WorkUnit),
done: make(chan struct{}),
wg: new(sync.WaitGroup),
}
}
// 将WorkFunc放入到WorkUnit中并保留取消和输出结果的参考。
func (b *batch) Queue(fn WorkFunc) {
b.m.Lock()
if b.closed {
b.m.Unlock()
return
}
// 返回一个WorkUnit
wu := b.pool.Queue(fn)
// 放到WorkUnit的切片中
b.units = append(b.units, wu)
// 通过waitgroup进行goroutine的执行控制
b.wg.Add(1)
b.m.Unlock()
// 执行任务
go func(b *batch, wu WorkUnit) {
wu.Wait()
// 将执行的结果写入到results中
b.results = 0; i-- {
b.units[i].Cancel()
}
b.m.Unlock()
}
// 输出执行完成的结果集
func (b *batch) Results()
<p>梳理下流程:</p>
<p>1、首先初始化Batch的大小;</p>
<p>2、然后Queue将一个个WorkFunc放入到WorkUnit中,执行,并将结果写入到results中,全部执行完成,调用QueueComplete,发送执行完成的通知;</p>
<p>3、Results会打印出所有的结果集,同时监听所有的worker执行完成,关闭channel,退出。</p>
<h2>总结<br></h2>
<p>控制goroutine数量一般使用两种方式:</p>
- 简单的场景使用sync+channel就可以了;
- 复杂的场景可以使用goroutine pool
参考
【Golang 开发需要协程池吗?】https://www.zhihu.com/question/302981392
【来,控制一下 Goroutine 的并发数量】https://segmentfault.com/a/1190000017956396
【golang协程池设计】https://segmentfault.com/a/1190000018193161
【fasthttp中的协程池实现】https://segmentfault.com/a/1190000009133154
【panjf2000/ants】https://github.com/panjf2000/ants
【golang协程池设计】https://segmentfault.com/a/1190000018193161
到这里,我们也就讲完了《go中控制goroutine数量的方法》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于golang的知识点!
go语言通过反射创建结构体、赋值、并调用对应的操作
- 上一篇
- go语言通过反射创建结构体、赋值、并调用对应的操作
- 下一篇
- 解决go在函数退出后子协程的退出问题
-
- Golang · Go教程 | 5分钟前 |
- Go语言高效筛选JSON数组技巧
- 325浏览 收藏
-
- Golang · Go教程 | 16分钟前 | golang 并发安全 HTTP服务 投票系统 sync.RWMutex
- Golang实现投票系统教程详解
- 116浏览 收藏
-
- Golang · Go教程 | 20分钟前 | golang module
- Golang依赖重新下载技巧全解析
- 452浏览 收藏
-
- Golang · Go教程 | 30分钟前 |
- Golang文件读取错误处理技巧
- 313浏览 收藏
-
- Golang · Go教程 | 37分钟前 |
- GolangRESTAPI版本控制方法解析
- 472浏览 收藏
-
- Golang · Go教程 | 56分钟前 |
- Golang中间件日志记录技巧
- 426浏览 收藏
-
- Golang · Go教程 | 1小时前 |
- Golang中介者模式降低耦合技巧
- 193浏览 收藏
-
- Golang · Go教程 | 1小时前 |
- GolangSocket编程实战教程
- 355浏览 收藏
-
- Golang · Go教程 | 1小时前 |
- Go测试中相对路径资源加载技巧
- 375浏览 收藏
-
- Golang · Go教程 | 1小时前 |
- GolangBenchmark内存分配性能分析
- 280浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 485次学习
-
- ChatExcel酷表
- ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
- 3176次使用
-
- Any绘本
- 探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
- 3388次使用
-
- 可赞AI
- 可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
- 3417次使用
-
- 星月写作
- 星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
- 4522次使用
-
- MagicLight
- MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
- 3796次使用
-
- Go语言使用goroutine及通道实现并发详解
- 2023-01-02 221浏览
-
- 如果用go写一个高性能点的聊天服务器应该怎么写?
- 2023-02-16 433浏览
-
- GoLang使goroutine停止的五种方法实例
- 2022-12-30 106浏览
-
- Go语言CSP并发模型goroutine及channel底层实现原理
- 2022-12-31 451浏览
-
- Go并发的方法之goroutine模型与调度策略
- 2023-01-01 331浏览

