当前位置:首页 > 文章列表 > 文章 > python教程 > 使用Python中DataFrame数据的合并方法:merge()和concat()

使用Python中DataFrame数据的合并方法:merge()和concat()

来源:亿速云 2024-03-27 18:18:20 0浏览 收藏
推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习文章相关编程知识。下面本篇文章就来带大家聊聊《使用Python中DataFrame数据的合并方法:merge()和concat()》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!

    merge()

    1.常规合并

    ①方法1

    指定一个参照列,以该列为准,合并其他列。

    import pandas as pd
    
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 101, 104],
                        'num2': [110, 102, 121],
                        'num3': [105, 120, 113]})
    df2 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num4': [80, 86, 79]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")
    df_merge = pd.merge(df1, df2, on='id')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    ②方法2

    要实现该合并,也可以通过索引来合并,即以index列为基准。将left_index 和 right_index 都设置为True
    即可。(left_index 和 right_index 都默认为False,left_index表示左表以左表数据的index为基准, right_index表示右表以右表数据的index为基准。)

    import pandas as pd
    
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 101, 104],
                        'num2': [110, 102, 121],
                        'num3': [105, 120, 113]})
    df2 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num4': [80, 86, 79]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")
    
    df_merge = pd.merge(df1, df2, left_index=True, right_index=True)
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    相比方法①,区别在于,如图,方法②合并出的数据中有重复列。

    重要参数

    pd.merge(right,how=‘inner’, on=“None”, left_on=“None”, right_on=“None”, left_index=False, right_index=False )

    参数描述
    left左表,合并对象,DataFrame或Series
    right右表,合并对象,DataFrame或Series
    how合并方式,可以是left(左合并), right(右合并), outer(外合并), inner(内合并)
    on基准列 的列名
    left_on左表基准列列名
    right_on右表基准列列名
    left_index左列是否以index为基准,默认False,否
    right_index右列是否以index为基准,默认False,否

    其中,left_index与right_index 不能与 on 同时指定。

    合并方式 left right outer inner

    准备数据‘

    新准备一组数据:

    import pandas as pd
    
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 101, 104],
                        'num2': [110, 102, 121],
                        'num3': [105, 120, 113]})
    df2 = pd.DataFrame({'id': ['001', '004', '003'],
                        'num4': [80, 86, 79]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")

    python中DataFrame数据合并merge()和concat()方法怎么用

    inner(默认)

    使用来自两个数据集的键的交集

    df_merge = pd.merge(df1, df2, on='id')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    outer

    使用来自两个数据集的键的并集

    df_merge = pd.merge(df1, df2, on='id', how="outer")
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    left

    使用来自左数据集的键

    df_merge = pd.merge(df1, df2, on='id', how='left')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    right

    使用来自右数据集的键

    df_merge = pd.merge(df1, df2, on='id', how='right')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    2.多对一合并

    import pandas as pd
    
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 101, 104],
                        'num2': [110, 102, 121],
                        'num3': [105, 120, 113]})
    df2 = pd.DataFrame({'id': ['001', '001', '003'],
                        'num4': [80, 86, 79]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")

    python中DataFrame数据合并merge()和concat()方法怎么用

    如图,df2中有重复id1的数据。

    合并

    df_merge = pd.merge(df1, df2, on='id')
    print(df_merge)

    合并结果如图所示:

    python中DataFrame数据合并merge()和concat()方法怎么用

    依然按照默认的Inner方式,使用来自两个数据集的键的交集。且重复的键的行会在合并结果中体现为多行。

    3.多对多合并

    如图表1和表2中都存在多行id重复的。

    import pandas as pd
    df1 = pd.DataFrame({'id': ['001', '002', '002', '002', '003'],
                        'num1': [120, 101, 104, 114, 123],
                        'num2': [110, 102, 121, 113, 126],
                        'num3': [105, 120, 113, 124, 128]})
    df2 = pd.DataFrame({'id': ['001', '001', '002', '003', '001'],
                        'num4': [80, 86, 79, 88, 93]})
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")

    python中DataFrame数据合并merge()和concat()方法怎么用

    df_merge = pd.merge(df1, df2, on='id')
    print(df_merge)

    python中DataFrame数据合并merge()和concat()方法怎么用

    concat()

    pd.concat(objs, axis=0, join=‘outer’, ignore_index:bool=False,keys=None,levels=None,names=None, verify_integrity:bool=False,sort:bool=False,copy:bool=True)

    参数描述
    objsSeries,DataFrame或Panel对象的序列或映射
    axis默认为0,表示列。如果为1则表示行。
    join默认为"outer",也可以为"inner"
    ignore_index默认为False,表示保留索引(不忽略)。设为True则表示忽略索引。

    其他重要参数通过实例说明。

    1.相同字段的表首位相连

    首先准备三组DataFrame数据:

    import pandas as pd
    df1 = pd.DataFrame({'id': ['001', '002', '003'],
                        'num1': [120, 114, 123],
                        'num2': [110, 102, 121],
                        'num3': [113, 124, 128]})
    df2 = pd.DataFrame({'id': ['004', '005'],
                        'num1': [120, 101],
                        'num2': [113, 126],
                        'num3': [105, 128]})
    df3 = pd.DataFrame({'id': ['007', '008', '009'],
                        'num1': [120, 101, 125],
                        'num2': [113, 126, 163],
                        'num3': [105, 128, 114]})
    
    
    print(df1)
    print("=======================================")
    print(df2)
    print("=======================================")
    print(df3)

    python中DataFrame数据合并merge()和concat()方法怎么用

    合并

    dfs = [df1, df2, df3]
    result = pd.concat(dfs)
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    如果想要在合并后,标记一下数据都来自于哪张表或者数据的某类别,则也可以给concat加上 参数keys

    result = pd.concat(dfs, keys=['table1', 'table2', 'table3'])
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    此时,添加的keys与原来的index组成元组,共同成为新的index。

    print(result.index)

    python中DataFrame数据合并merge()和concat()方法怎么用

    2.横向表合并(行对齐)

    准备两组DataFrame数据:

    import pandas as pd
    df1 = pd.DataFrame({'num1': [120, 114, 123],
                        'num2': [110, 102, 121],
                        'num3': [113, 124, 128]}, index=['001', '002', '003'])
    df2 = pd.DataFrame({'num3': [117, 120, 101, 126],
                        'num5': [113, 125, 126, 133],
                        'num6': [105, 130, 128, 128]}, index=['002', '003', '004', '005'])
    
    print(df1)
    print("=======================================")
    print(df2)

    python中DataFrame数据合并merge()和concat()方法怎么用

    当axis为默认值0时:

    result = pd.concat([df1, df2])
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    横向合并需要将axis设置为1

    result = pd.concat([df1, df2], axis=1)
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    对比以上输出差异。

    • axis=0时,即默认纵向合并时,如果出现重复的行,则会同时体现在结果中

    • axis=1时,即横向合并时,如果出现重复的列,则会同时体现在结果中。

    3.交叉合并

    result = pd.concat([df1, df2], axis=1, join='inner')
    print(result)

    python中DataFrame数据合并merge()和concat()方法怎么用

    好了,本文到此结束,带大家了解了《使用Python中DataFrame数据的合并方法:merge()和concat()》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

    版本声明
    本文转载于:亿速云 如有侵犯,请联系study_golang@163.com删除
    如何解决PHP Fatal error: Call to a member function fetchAll()错误如何解决PHP Fatal error: Call to a member function fetchAll()错误
    上一篇
    如何解决PHP Fatal error: Call to a member function fetchAll()错误
    Linux上容器存储性能优化及高可用配置指南
    下一篇
    Linux上容器存储性能优化及高可用配置指南
    查看更多
    最新文章
    查看更多
    课程推荐
    • 前端进阶之JavaScript设计模式
      前端进阶之JavaScript设计模式
      设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
      543次学习
    • GO语言核心编程课程
      GO语言核心编程课程
      本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
      516次学习
    • 简单聊聊mysql8与网络通信
      简单聊聊mysql8与网络通信
      如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
      500次学习
    • JavaScript正则表达式基础与实战
      JavaScript正则表达式基础与实战
      在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
      487次学习
    • 从零制作响应式网站—Grid布局
      从零制作响应式网站—Grid布局
      本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
      485次学习
    查看更多
    AI推荐
    • ChatExcel酷表:告别Excel难题,北大团队AI助手助您轻松处理数据
      ChatExcel酷表
      ChatExcel酷表是由北京大学团队打造的Excel聊天机器人,用自然语言操控表格,简化数据处理,告别繁琐操作,提升工作效率!适用于学生、上班族及政府人员。
      3207次使用
    • Any绘本:开源免费AI绘本创作工具深度解析
      Any绘本
      探索Any绘本(anypicturebook.com/zh),一款开源免费的AI绘本创作工具,基于Google Gemini与Flux AI模型,让您轻松创作个性化绘本。适用于家庭、教育、创作等多种场景,零门槛,高自由度,技术透明,本地可控。
      3421次使用
    • 可赞AI:AI驱动办公可视化智能工具,一键高效生成文档图表脑图
      可赞AI
      可赞AI,AI驱动的办公可视化智能工具,助您轻松实现文本与可视化元素高效转化。无论是智能文档生成、多格式文本解析,还是一键生成专业图表、脑图、知识卡片,可赞AI都能让信息处理更清晰高效。覆盖数据汇报、会议纪要、内容营销等全场景,大幅提升办公效率,降低专业门槛,是您提升工作效率的得力助手。
      3450次使用
    • 星月写作:AI网文创作神器,助力爆款小说速成
      星月写作
      星月写作是国内首款聚焦中文网络小说创作的AI辅助工具,解决网文作者从构思到变现的全流程痛点。AI扫榜、专属模板、全链路适配,助力新人快速上手,资深作者效率倍增。
      4558次使用
    • MagicLight.ai:叙事驱动AI动画视频创作平台 | 高效生成专业级故事动画
      MagicLight
      MagicLight.ai是全球首款叙事驱动型AI动画视频创作平台,专注于解决从故事想法到完整动画的全流程痛点。它通过自研AI模型,保障角色、风格、场景高度一致性,让零动画经验者也能高效产出专业级叙事内容。广泛适用于独立创作者、动画工作室、教育机构及企业营销,助您轻松实现创意落地与商业化。
      3828次使用
    微信登录更方便
    • 密码登录
    • 注册账号
    登录即同意 用户协议隐私政策
    返回登录
    • 重置密码