当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 谷歌创新提出RLHF方法:无需对抗性训练,直接消除奖励模型

谷歌创新提出RLHF方法:无需对抗性训练,直接消除奖励模型

来源:机器之心 2024-03-27 16:27:13 0浏览 收藏

亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《谷歌创新提出RLHF方法:无需对抗性训练,直接消除奖励模型》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下,希望所有认真读完的童鞋们,都有实质性的提高。

效果更稳定,实现更简单。

大型语言模型(LLM)的成功离不开「基于人类反馈的强化学习(RLHF)」。RLHF 可以大致可以分为两个阶段,首先,给定一对偏好和不偏好的行为,训练一个奖励模型,通过分类目标为前者分配更高的分数。然后通过某种强化学习算法优化这个奖励函数。然而,奖励模型的关键要素可能会产生一些不良影响。

来自卡内基梅隆大学(CMU)和 Google Research 的研究者联合提出了一种简单的、理论上严格的、实验上有效的 RLHF 新方法 —— 自我博弈偏好优化(Self-Play Preference Optimization,SPO)。该方法消除了奖励模型,并且不需要对抗性训练。

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

论文:A Minimaximalist Approach to Reinforcement Learning from Human Feedback
论文地址:https://arxiv.org/abs/2401.04056

方法简介

SPO 方法主要包括两个方面。首先,该研究通过将 RLHF 构建为两者零和博弈(zero-sum game),真正消除了奖励模型,从而更有能力处理实践中经常出现的噪声、非马尔可夫偏好。其次,通过利用博弈的对称性,该研究证明可以简单地以自我博弈的方式训练单个智能体,从而消除了不稳定对抗训练的需要。

实际上,这相当于从智能体中采样多个轨迹,要求评估者或偏好模型比较每对轨迹,并将奖励设置为轨迹的获胜率。
谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练
SPO 避免了奖励建模、复合 error 和对抗性训练。通过从社会选择理论(social choice theory)中建立最小最大获胜者的概念,该研究将 RLHF 构建为两者零和博弈,并利用该博弈支付矩阵的对称性来证明可以简单地训练单个智能体来对抗其自身。

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

该研究还分析了 SPO 的收敛特性,并证明在潜在奖励函数确实存在的情况下,SPO 能以与标准方法相媲美的快速速度收敛到最优策略。

实验

该研究在一系列具有现实偏好函数的连续控制任务上,证明了 SPO 比基于奖励模型的方法性能更好。SPO 在各种偏好设置中能够比基于奖励模型的方法更有效地学习样本,如下图 2 所示。

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

该研究从多个维度将 SPO 与迭代奖励建模 (RM) 方法进行比较,旨在回答 4 个问题:

  1. 当面 intransitive 偏好时,SPO 能否计算 MW?
  2. 在具有独特 Copeland Winners / 最优策略的问题上,SPO 能否匹配或超过 RM 样本效率?
  3. SPO 对随机偏好的稳健性如何?
  4. SPO 可以处理非马尔可夫偏好吗?

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

在最大奖励偏好、噪声偏好、非马尔可夫偏好方面,该研究的实验结果分别如下图 6、7、8 所示:

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

谷歌提出全新RLHF方法:消除奖励模型,且无需对抗性训练

感兴趣的读者可以阅读论文原文,了解更多研究内容。

终于介绍完啦!小伙伴们,这篇关于《谷歌创新提出RLHF方法:无需对抗性训练,直接消除奖励模型》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!

版本声明
本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
PHP版本NTS的解读和区别PHP版本NTS的解读和区别
上一篇
PHP版本NTS的解读和区别
简化PHP页面加载速度的方法
下一篇
简化PHP页面加载速度的方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    2次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    2次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    2次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    9次使用
  • Brev AI:零注册门槛的全功能免费AI音乐创作平台
    Brev AI
    探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
    10次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码