Python实现单变量线性回归的示例
本文介绍了如何使用Python中的scikit-learn库实现单变量线性回归,包括数据准备、数据分析和可视化、拟合线性回归模型和预测结果。在统计学和机器学习中,线性回归是一种用于建立两个变量之间关系的方法。在单变量线性回归中,我们只有一个解释变量(自变量)和一个响应变量(因变量)。本文将指导读者完成线性回归模型的步骤,包括导入库,准备数据,数据分析和可视化,拟合线性回归模型以及可视化结果。线性回归是一个简单而强大的工具,可用于研究两个变量之间的关系并进行预测,在数据分析和机器学习中有着广泛的应用。
Python是一种非常流行的编程语言,其强大的科学计算和数据处理能力使其在数据分析和机器学习领域得到广泛应用。本文将介绍如何在Python中使用单变量线性回归进行数据建模和预测,并通过一个实例来演示其实际应用。
首先,什么是线性回归?在统计学和机器学习中,线性回归是一种用于建立两个变量之间关系的方法。在单变量线性回归中,我们只有一个解释变量(自变量)和一个响应变量(因变量)。
接下来,我们将介绍如何使用Python中的scikit-learn库来实现单变量线性回归。scikit-learn是一个流行的机器学习库,其中包含许多用于数据建模和可视化的工具。
Step 1: 导入库和数据
首先,我们需要导入一些库。在本文中,我们将使用NumPy、Pandas、Matplotlib和Scikit-learn。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
接下来,我们需要准备要分析的数据。在这个例子中,我们将使用一组有关于房屋面积和价格的数据,这是一个非常简单的数据集。
数据
df = pd.DataFrame({'面积': [1400, 1600, 1700, 1875, 1100, 1550, 2350, 2450, 1425, 1700],
'价格': [245000, 312000, 279000, 308000, 199000, 219000, 405000, 324000, 319000, 255000]})
print(df)
输出如下:
面积 价格
0 1400 245000
1 1600 312000
2 1700 279000
3 1875 308000
4 1100 199000
5 1550 219000
6 2350 405000
7 2450 324000
8 1425 319000
9 1700 255000
Step 2: 数据分析与可视化
一旦我们导入了数据,我们可以开始进行一些数据分析和可视化。让我们绘制一个散点图,其中横坐标是房屋面积,纵坐标是售价。
plt.scatter(df['面积'], df['价格'])
plt.xlabel('面积')
plt.ylabel('价格')
plt.show()
输出:
这张散点图告诉我们,随着房屋面积的增加,售价也增加。因此,这两个变量之间可能存在一种线性关系。
Step 3: 拟合线性回归模型
现在,我们可以开始拟合线性回归模型。在scikit-learn中,建立线性模型需要使用LinearRegression()函数。
X = df[['面积']]
Y = df['价格']
model = LinearRegression().fit(X, Y)
在这里,我们将面积赋值给自变量X,价格赋值给因变量Y,并将其传递到LinearRegression()函数中。拟合模型后,我们可以检查斜率和截距。
print('斜率:', model.coef_)
print('截距:', model.intercept_)
输出:
斜率: [126.88610769]
截距: 36646.35077294225
Step 4: 可视化结果
完成了模型的训练,我们可以使用Matplotlib绘制回归线并预测房屋价格。下面的代码将展示如何预测一个新的房屋面积的售价。
预测
y_pred = model.predict([[2000]])
print('预测售价:', y_pred)
绘制回归线
plt.scatter(df['面积'], df['价格'])
plt.plot(df['面积'], model.predict(df[['面积']]), color='r')
plt.xlabel('面积')
plt.ylabel('价格')
plt.show()
输出:
可以看出,我们的回归线符合我们的数据点,我们可以使用拟合的模型来预测新的房屋面积的售价。
本文介绍了如何使用Python中的scikit-learn库实现单变量线性回归,包括数据准备、数据分析和可视化、拟合线性回归模型和预测结果。线性回归是一个简单而强大的工具,可用于研究两个变量之间的关系并进行预测,在数据分析和机器学习中有着广泛的应用。
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- PHP Warning: How to Resolve the issue with in_array() expecting parameter 2 to be an array

- 下一篇
- 使用Slim框架开发轻量级RESTful API
-
- 文章 · python教程 | 12分钟前 |
- Python定时任务怎么实现?
- 360浏览 收藏
-
- 文章 · python教程 | 15分钟前 |
- Python中elif的作用与用法详解
- 241浏览 收藏
-
- 文章 · python教程 | 21分钟前 |
- Python观察者模式实现与解耦技巧
- 488浏览 收藏
-
- 文章 · python教程 | 33分钟前 |
- Python日期转换技巧:datetime实用教程
- 443浏览 收藏
-
- 文章 · python教程 | 35分钟前 |
- 405错误怎么解决?前端部署教程
- 344浏览 收藏
-
- 文章 · python教程 | 44分钟前 | JavaScript Python Selenium 反爬 H5视频链接
- Python抓取H5视频链接的技巧分享
- 467浏览 收藏
-
- 文章 · python教程 | 44分钟前 |
- Python中QHttpServer返回JSON的实现方法
- 384浏览 收藏
-
- 文章 · python教程 | 1小时前 |
- Turtle窗口大小控制与无边框绘图技巧
- 169浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 千音漫语
- 千音漫语,北京熠声科技倾力打造的智能声音创作助手,提供AI配音、音视频翻译、语音识别、声音克隆等强大功能,助力有声书制作、视频创作、教育培训等领域,官网:https://qianyin123.com
- 151次使用
-
- MiniWork
- MiniWork是一款智能高效的AI工具平台,专为提升工作与学习效率而设计。整合文本处理、图像生成、营销策划及运营管理等多元AI工具,提供精准智能解决方案,让复杂工作简单高效。
- 142次使用
-
- NoCode
- NoCode (nocode.cn)是领先的无代码开发平台,通过拖放、AI对话等简单操作,助您快速创建各类应用、网站与管理系统。无需编程知识,轻松实现个人生活、商业经营、企业管理多场景需求,大幅降低开发门槛,高效低成本。
- 157次使用
-
- 达医智影
- 达医智影,阿里巴巴达摩院医疗AI创新力作。全球率先利用平扫CT实现“一扫多筛”,仅一次CT扫描即可高效识别多种癌症、急症及慢病,为疾病早期发现提供智能、精准的AI影像早筛解决方案。
- 150次使用
-
- 智慧芽Eureka
- 智慧芽Eureka,专为技术创新打造的AI Agent平台。深度理解专利、研发、生物医药、材料、科创等复杂场景,通过专家级AI Agent精准执行任务,智能化工作流解放70%生产力,让您专注核心创新。
- 159次使用
-
- Flask框架安装技巧:让你的开发更高效
- 2024-01-03 501浏览
-
- Django框架中的并发处理技巧
- 2024-01-22 501浏览
-
- 提升Python包下载速度的方法——正确配置pip的国内源
- 2024-01-17 501浏览
-
- Python与C++:哪个编程语言更适合初学者?
- 2024-03-25 501浏览
-
- 品牌建设技巧
- 2024-04-06 501浏览