团队提出“规则重要性”:帮助AI有效学习大量物理知识
研究人员提出“规则重要性”概念,开发出一种框架,可量化规则对深度学习模型预测精度的贡献。该框架揭示了数据和知识之间的复杂相互作用,为知识嵌入提供理论指导,并可用于平衡训练过程中知识和数据的影响。该方法有助于识别不恰当的先验规则,为交叉学科领域的研究与应用提供广阔前景。
编辑 | ScienceAI
深度学习模型由于其可以从海量数据中学习潜在关系的能力而在科学研究领域产生了深远影响。然而,纯粹依赖数据的模型逐渐显露出其局限性,包括对数据的过度依赖、泛化能力的限制以及与现实物理世界的一致性问题。这些问题推动着研究者探索更具解释性和可解释性的模型,以弥补数据驱动模型的不足。因此,结合领域知识和数据驱动方法,构建更具可解释性和泛化能力的模型成为当前科学研究的重要方向。这种
例如,美国OpenAI公司开发的文本到视频模型Sora因其出色的图像生成能力而备受赞誉,被认为是人工智能领域的重要进展。尽管能够生成逼真的图像和视频,Sora在处理物理定律方面仍存在一些挑战,比如重力和物体碎裂等。虽然Sora在模拟现实场景方面取得了显著进展,但在理解和准确模拟物理规律方面还有改进的空间。AI技术的发展仍需要不断努力,以提高模型的全面性和准确性,从而更好地适应各种现实世界的情境。
解决这一问题的一个潜在途径是将人类知识融入深度学习模型中。通过结合先验知识和数据,可以增强模型的泛化能力,从而产生能够理解物理规律的「知情机器学习」(Informed machine learning)模型。这种方法有望提高模型的性能和准确性,使其能够更好地应对现实世界中的复杂问题。通过将人类专家的经验和洞察力融入机器学习算法,我们可以建立更加智能和高效的系统,从而推动人工智能技术的发展和应用。
目前,对深度学习中知识的确切价值仍然缺乏深入探讨。在确定哪些先验知识可以有效地整合到模型中以进行“预学习”方面,存在着一个急需解决的难题。同时,盲目地融合多项规则可能导致模型的失效,这一点也是需要引起重视的。这些限制给数据与知识关系的深入探索带来了挑战。
针对这一问题,东方理工(EIT)和北京大学的研究团队提出了「规则重要性」的概念,并开发了一套框架,能精确计算每个规则对模型预测精度的贡献。该框架不仅揭示了数据和知识之间的复杂相互作用关系,为知识嵌入提供了理论性指导,还有助于在训练过程中平衡知识和数据的影响。此外,该方法还可用于识别不恰当的先验规则,为交叉学科领域的研究与应用提供广阔前景。
这项研究题为“Prior Knowledge's Impact on Deep Learning”,已于2024年3月8日在 Cell 出版社旗下的跨学科期刊《Nexus》上发表。该研究受到了 AAAS(美国科学促进会)和 EurekAlert! 的关注报道。
在教授孩子拼图时,既可以让他们通过反复试验来找出答案,也可以用一些基本的规则和技巧来引导他们。同样地,将规则和技巧——比如物理定律——融入到人工智能训练中能让它们更贴近现实,运作更高效。然而,如何评估这些规则在人工智能中的价值,一直是困扰研究者的难题。
鉴于先验知识的丰富多样性,将先验知识融入深度学习模型是一个复杂的多目标优化任务。研究团队创新性地提出了一个框架,以量化不同先验知识在提高深度学习模型方面的作用。他们将此过程视为充满合作与竞争的博弈,通过评估规则对模型预测的边际贡献来界定其重要性。首先生成所有可能的规则组合(即「联盟」),并对每个组合构建模型,并计算均方误差。
为降低计算成本,他们采用了一种基于扰动的高效算法:先训练一个完全基于数据的神经网络作为基线模型,然后逐一加入各个规则组合进行额外训练,最后在测试数据上评估模型表现。通过比较模型在包含和不包含某个规则的所有联盟中的表现,可以计算出该规则的边际贡献,进而得出其重要性。
通过流体力学的算例,研究人员探讨了数据与规则间的复杂关系。他们发现,在不同任务中,数据和先验规则的作用完全不同。当测试数据与训练数据分布相近时(即 In-distribution),数据量的增加会削弱规则的作用。
然而,当测试数据与训练数据分布相似度较低时(即 Out-of-distribution),全局规则的重要性被凸显出来,而局部规则的影响则被削弱。这两类规则的区别在于:全局规则(如控制方程)影响整个域,而局部规则(如边界条件)仅作用于特定区域。
研究团队经数值实验发现,在知识嵌入中,规则间存在三种相互作用效应:依赖效应、协同效应和替代效应。
依赖效应指某些规则需依赖其他规则才能有效;协同效应表明多条规则共同作用的效果超越各自独立作用时的总和;替代效应则显示一条规则的功能可能被数据或其他规则替代。
这三种效应同时存在,并受到数据量的影响。通过计算规则重要性,可清晰展示这些效应,为知识嵌入提供重要指导。
在应用层面,研究团队试图解决知识嵌入过程中的一个核心问题:如何平衡数据与规则的作用,以提升嵌入效率并筛选出不适宜的先验知识。在模型的训练过程中,该团队提出了一种动态调整规则权重的策略。
具体而言,随着训练迭代步的增加,逐渐增大正重要性规则的权重,同时减小负重要性规则的权重。这种策略能够根据优化过程的需求,实时调整模型对不同规则的关注度,从而实现更加高效和准确的知识嵌入。
此外,向 AI 模型传授物理定律可以使它们「更加贴近现实世界,从而在科学和工程领域发挥更大作用」。因此,该框架在工程、物理和化学领域具有广泛的实际应用。研究人员不仅优化了机器学习模型来求解多元方程,还准确识别出对薄层色谱分析预测模型性能有提升效果的规则。
实验结果显示,通过融入这些有效规则,模型的性能得到了显著提升,测试数据集上的均方误差从 0.052 降低至 0.036(减少了 30.8%)。这意味着该框架可以将经验性见解转化为结构化知识,从而显著提升模型性能。
总体而言,准确评估知识的价值有助于构建更契合现实的AI模型,提高安全性和可靠性,对深度学习发展具有重要意义。
接下来,研究团队计划将他们的框架开发成可供人工智能开发人员使用的插件工具。他们的最终目标是开发出能够直接从数据中提取知识和规则,进而自我完善的模型,从而打造一个从知识发现到知识嵌入的闭环系统,使模型成为真正的人工智能科学家。
论文链接:https://www.cell.com/nexus/fulltext/S2950-1601(24)00001-9
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

- 上一篇
- 转换 big.Rat 为字符串,但不指定精度

- 下一篇
- 深入了解PHP框架TP5的数据总数查询方法
-
- 科技周边 · 人工智能 | 4小时前 |
- Suna—全球首发开源通用AIAgent
- 369浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 7次使用
-
- Brev AI
- 探索Brev AI,一个无需注册即可免费使用的AI音乐创作平台,提供多功能工具如音乐生成、去人声、歌词创作等,适用于内容创作、商业配乐和个人创作,满足您的音乐需求。
- 7次使用
-
- AI音乐实验室
- AI音乐实验室(https://www.aimusiclab.cn/)是一款专注于AI音乐创作的平台,提供从作曲到分轨的全流程工具,降低音乐创作门槛。免费与付费结合,适用于音乐爱好者、独立音乐人及内容创作者,助力提升创作效率。
- 6次使用
-
- PixPro
- SEO摘要PixPro是一款专注于网页端AI图像处理的平台,提供高效、多功能的图像处理解决方案。通过AI擦除、扩图、抠图、裁切和压缩等功能,PixPro帮助开发者和企业实现“上传即处理”的智能化升级,适用于电商、社交媒体等高频图像处理场景。了解更多PixPro的核心功能和应用案例,提升您的图像处理效率。
- 6次使用
-
- EasyMusic
- EasyMusic.ai是一款面向全场景音乐创作需求的AI音乐生成平台,提供“零门槛创作 专业级输出”的服务。无论你是内容创作者、音乐人、游戏开发者还是教育工作者,都能通过EasyMusic.ai快速生成高品质音乐,满足短视频、游戏、广告、教育等多元需求。平台支持一键生成与深度定制,积累了超10万创作者,生成超100万首音乐作品,用户满意度达99%。
- 9次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览