当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > 深度压缩技术:清华&哈工大提出极致压缩方案,模型“瘦身”90%、保留83%能力

深度压缩技术:清华&哈工大提出极致压缩方案,模型“瘦身”90%、保留83%能力

来源:51CTO.COM 2024-03-20 16:09:18 0浏览 收藏

清华大学和哈工大联合开发的OneBit框架实现了大模型权重压缩率超过90%,同时保留了83%的模型能力。该框架通过量化、参数初始化和知识蒸馏,克服了超低位宽量化导致的精度损失和稳定性问题。OneBit框架在不同规模和系列的模型上都取得了显著的压缩效果,并且在大小和性能之间实现了良好的折中。

对大模型进行量化、剪枝等压缩操作,是部署时最常见不过的一环了。

不过,这个极限究竟有多大?

清华大学和哈工大的一项联合研究给出的答案是:

90%。

他们提出了大模型1bit极限压缩框架OneBit,首次实现大模型权重压缩超越90%并保留大部分(83%)能力。

可以说,玩儿的就是“既要也要”~

让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%

一起来看看。

大模型1bit量化方法来了

从剪枝、量化,到知识蒸馏、权重低秩分解,大模型已经可以实现压缩四分之一权重而几乎无损。

权重量化通常是将大型模型的参数转换为低位宽的表示形式。这可以通过对经过充分训练的模型进行转换(PTQ)或在训练过程中引入量化步骤(QAT)来实现。这种方法有助于减少模型的计算和存储需求,从而提高模型的效率和性能。通过量化权重,可以显著减少模型的大小,使其更适合在资源受限的环境中部署,同时也有

然而,现有量化方法在低于3bit时面临严重的性能损失,这主要是由于:

  1. 现有的参数低位宽表示方法在1bit时存在严重的精度损失。基于Round-To-Nearest方法的参数以1bit表示时,其转换的缩放系数s和零点z会失去实际意义。
  2. 现有的1bit模型结构没有充分考虑到浮点精度的重要性。浮点参数的缺失可能影响模型计算过程的稳定性,严重降低其本身的学习能力。

为了克服1bit超低位宽量化的阻碍,作者提出一种全新的1bit模型框架:OneBit,它包括全新的1bit线性层结构、基于SVID的参数初始化方法和基于量化感知知识蒸馏的深度迁移学习。

这种新的1bit模型量化方法能够以极大的压缩幅度、超低的空间占用和有限的计算成本,保留原模型绝大部分的能力。这对于实现大模型在PC端甚至智能手机上的部署意义非凡。

整体框架

OneBit框架总体上可以包括:全新设计的1bit模型结构、基于原模型初始化量化模型参数的方法以及基于知识蒸馏的深度能力迁移。

这种全新设计的1bit模型结构能够有效克服以往量化工作在1bit量化时严重的精度损失问题,并且在训练、迁移过程中表现出出色的稳定性。

量化模型的初始化方法能为知识蒸馏设置更好的起点,加速收敛的同时获得更加的能力迁移效果。

1、1bit模型结构

1bit要求每个权重值只能用1bit表示,所以最多只有两种可能的状态。

作者选用±1作为这两种状态,好处就是,它代表了数字系统中的两种符号、功能更加完备,同时可以通过Sign(·)函数方便地获得。

作者的1bit模型结构是通过把FP16模型的所有线性层(嵌入层和lm_head除外)替换为1bit线性层实现的。

这里的1bit线性层除通过Sign(·)函数获得的1bit权重之外,还包括另外两个关键组件—FP16精度的值向量。

让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%

△FP16线性层与OneBit线性层的对比

这种设计不仅保持了原始权重矩阵的高秩,而且通过值向量提供了必要的浮点精度,对保证稳定且高质量的学习过程很有意义。

从上图可以看出,只有值向量g和h保持FP16格式,而权重矩阵则全部由±1组成。

作者通过一个例子可以一观OneBit的压缩能力。

假设压缩一个40964096的FP16线性层,OneBit需要一个40964096的1bit矩阵和两个4096*1的FP16值向量。

这里面总的位数为16,908,288,总的参数个数为16,785,408,平均每个参数占用仅仅约1.0073 bit。

这样的压缩幅度是空前的,可以说是真正的1bit LLM。

2、参数初始化和迁移学习

为了利用充分训练好的原模型更好地初始化量化后的模型,作者提出一种新的参数矩阵分解方法,称为“值-符号独立的矩阵分解(SVID)”。

这一矩阵分解方法把符号和绝对值分开,并把绝对值进行秩-1近似,其逼近原矩阵参数的方式可以表示成:

让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%

秩-1近似可以通过常用矩阵分解方法实现,例如奇异值分解(SVD)和非负矩阵分解(NMF)。

作者在数学上给出,这种SVID方法可以通过交换运算次序来和1bit模型框架相匹配,进而实现参数初始化。

此外,符号矩阵在分解过程中对近似原矩阵的贡献也被证明,详情见论文。

作者认为,解决大模型超低位宽量化的有效途径可能是量化感知训练QAT。

因此,在SVID给出量化模型的参数起点后,作者把原模型作为教师模型并通过知识蒸馏从中学习。

具体而言,学生模型主要接受教师模型的logits和hidden state的指导。

训练时,值向量和参数矩阵的值会被更新,而在部署时,则可以直接使用量化后的1bit参数矩阵进行计算。

模型越大,效果越好

作者选择的基线是FP16 Transformer、GPTQ、LLM-QAT和OmniQuant。

后三个都属于量化领域中经典的强基线,特别是OmniQuant是自作者之前最强的2bit量化方法。

由于目前还没有1bit权重量化的研究,作者只对OneBit框架使用1bit权重量化,而对其他方法采取2bit量化设置。

对于蒸馏数据,作者仿照LLM-QAT利用教师模型自采样的方式产生数据。

作者从1.3B到13B不同大小、OPT和LLaMA-1/2不同系列的模型来证明OneBit的有效性。在评价指标上,使用验证集的困惑度和常识推理的Zero-shot准确度。详情见论文。

让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%
让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%

上表展示了OneBit相比于其他方法在1bit量化时的优势。值得注意的是,模型越大时,OneBit效果往往越好。

随着模型规模增大,OneBit量化模型降低的困惑度比FP16模型降低的困惑度要多。

以下是几种不同小模型的常识推理、世界知识和空间占用情况:

让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%
让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%
让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%

作者还比较了几种不同类型小模型的大小和实际能力。

作者发现,尽管OneBit-7B平均位宽最小、占用的空间最小、训练的步数也相对少,但它在常识推理能力上不逊于其他模型。

同时作者也发现,OneBit-7B模型在社会科学领域出现较严重的知识遗忘。

让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%

△FP16线性层与OneBit线性层的对比一个OneBit-7B指令微调后的文本生成例子

上图还展示了一个OneBit-7B指令微调后的文本生成例子。可见,OneBit-7B有效地受到了SFT阶段的能力增益,可以比较流畅地生成文本,尽管总参数只有1.3GB(与FP16的0.6B模型相当)。总的来说,OneBit-7B展示出了其实际应用价值。

分析与讨论

作者展示了OneBit对不同规模LLaMA模型的压缩比,可以看出,OneBit对模型的压缩比均超过惊人的90%。

让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%

特别是,随着模型增大,OneBit的压缩比越高。

这显示出作者方法在更大模型上的优势:以更高的压缩比获得更大的边际收益(困惑度)。此外,作者的方法在大小和性能之间做到了很好的权衡。
让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%

1bit量化模型在计算上具有优势,意义十分重大。参数的纯二进制表示,不但可以节省大量的空间,还能降低矩阵乘法对硬件的要求。

高精度模型中矩阵乘法的元素相乘可以被变成高效的位运算,只需位赋值和加法就可以完成矩阵乘积,非常有应用前景。

此外,作者的方法在训练过程中保持了出色的稳定学习能力。

事实上,二值网络训练的不稳定问题、对超参数的敏感性和收敛困难一直受到研究人员关注。

作者分析了高精度值向量在促进模型稳定收敛过程中的重要意义。

有前人工作提出过1bit模型架构并用于从头训练模型(如BitNet[1]),但它对超参数敏感并且难以从充分训练的高精度模型中迁移学习。作者也尝试了BitNet在知识蒸馏中的表现,发现其训练还不够稳定。

让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%

总结

作者提出了一种用于1bit权重量化的模型结构和相应的参数初始化方法。

在各种大小和系列的模型上进行的广泛实验表明,OneBit在代表性的强基线上具有明显的优势,并实现了模型大小与性能之间的良好折中。

此外,作者进一步分析了这种极低比特量化模型的能力和前景,并为未来的研究提供了指导。

论文地址: https://arxiv.org/pdf/2402.11295.pdf

文中关于AI,模型,框架的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《深度压缩技术:清华&哈工大提出极致压缩方案,模型“瘦身”90%、保留83%能力》文章吧,也可关注golang学习网公众号了解相关技术文章。

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
Python与区块链:开启去中心化未来的新征程Python与区块链:开启去中心化未来的新征程
上一篇
Python与区块链:开启去中心化未来的新征程
PHP中时间戳数字化的有效方法
下一篇
PHP中时间戳数字化的有效方法
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 笔灵AI生成答辩PPT:高效制作学术与职场PPT的利器
    笔灵AI生成答辩PPT
    探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
    24次使用
  • 知网AIGC检测服务系统:精准识别学术文本中的AI生成内容
    知网AIGC检测服务系统
    知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
    39次使用
  • AIGC检测服务:AIbiye助力确保论文原创性
    AIGC检测-Aibiye
    AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
    38次使用
  • 易笔AI论文平台:快速生成高质量学术论文的利器
    易笔AI论文
    易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
    50次使用
  • 笔启AI论文写作平台:多类型论文生成与多语言支持
    笔启AI论文写作平台
    笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
    41次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码