LLM接口实现前后端系统合作,提升吞吐量5倍
大型语言模型 (LLM) 已广泛应用于各种任务,但与它们交互的系统存在不足。SGLang 是一种新提出的结构化生成语言,旨在提高 LLM 的性能和可控性。它将后端运行时系统与前端语言设计相结合,通过自动 KV 缓存复用 (RadixAttention) 和一种灵活的域特定语言 (SGLang) 实现这一目标。在常见的 LLM 工作负载上,SGLang 的吞吐量比现有系统高出 5 倍,在延迟方面也表现出色。SGLang 为复杂 LLM 程序的执行和编程效率提供了新的可能性。
大型语言模型 (LLM) 被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。
研究人员最近提出了一种新的结构化生成语言(Structured Generation Language),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。
总的来说,SGLang 的贡献主要包括:
在后端,研究团队提出了 RadixAttention,这是一种跨多个 LLM 生成调用的 KV 缓存(KV cache)复用技术,自动且高效。
在前端开发中,团队研究出一种灵活的域特定语言,可嵌入Python,用于控制生成过程。这种语言可以在解释器模式或编译器模式下执行。
后端前端组件协同工作,可提高复杂 LLM 程序的执行和编程效率。
该研究使用 SGLang 实现了常见的 LLM 工作负载,包括智能体、推理、提取、对话和小样本学习任务,并在 NVIDIA A10G GPU 上采用 Llama-7B 和 Mixtral-8x7B 模型。如下图 1 、图 2 表明,与现有系统(即 Guidance 和 vLLM)相比,SGLang 的吞吐量提高了 5 倍。
图 1:不同系统在 LLM 任务上的吞吐量(A10G、FP16 上的 Llama-7B、张量并行度 = 1)
图 2:不同系统在 LLM 任务上的吞吐量(A10G、FP16 上的 Mixtral-8x7B,张量并行度 = 8)
后端:使用 RadixAttention 自动 KV 缓存复用
在 SGLang 运行时的开发过程中,该研究发现了复杂 LLM 程序的优化关键 ——KV 缓存复用,当前系统对此处理不佳。KV 缓存复用意味着具有相同前缀的不同 prompt 可以共享中间 KV 缓存,避免冗余的内存和计算。在涉及多个 LLM 调用的复杂程序中,可能存在各种 KV 缓存复用模式。下图 3 说明了 LLM 工作负载中常见的四种此类模式。虽然某些系统能够在某些场景下处理 KV 缓存复用,但通常需要手动配置和临时调整。此外,由于可能的复用模式的多样性,即使通过手动配置,现有系统也无法自动适应所有场景。
图 3:KV 缓存共享示例。蓝色框是可共享的 prompt 部分,绿色框是不可共享的部分,黄色框是不可共享的模型输出。可共享的部分包括小样本学习示例、自洽(self-consistency)问题、多轮对话中的对话历史以及思维树(tree-of-thought)中的搜索历史。
为了系统地利用这些复用机会,该研究提出了一种在运行时自动 KV 缓存复用的新方法 —— RadixAttention。该方法不是在完成生成请求后丢弃 KV 缓存,而是在基数树(radix tree)中保留 prompt 和生成结果的 KV 缓存。这种数据结构可以实现高效的前缀搜索、插入和驱逐。该研究实现了最近最少使用(LRU)驱逐策略,并辅以缓存感知调度策略,以提高缓存命中率。
基数树可作为 trie(前缀树)节省空间的替代方案。与典型的树不同,基数树的边缘不仅可以用单个元素来标记,还可以用不同长度的元素序列来标记,这提高了基数树的效率。
该研究利用基数树来管理映射,这种映射是在充当键的 token 序列和充当值的相应 KV 缓存张量之间进行的。这些 KV 缓存张量以分页布局存储在 GPU 上,其中每个页的大小相当于一个 token。
考虑到 GPU 内存容量有限,无法重新训练无限的 KV 缓存张量,这就需要驱逐策略。该研究采用 LRU 驱逐策略,递归地驱逐叶节点。此外,RadixAttention 与连续批处理和分页注意力等现有技术兼容。对于多模态模型,RadixAttention 可以轻松扩展以处理图像 token。
下图说明了在处理多个传入请求时如何维护基数树。前端总是向运行时发送完整的 prompt,运行时会自动进行前缀匹配、复用和缓存。树形结构存储在 CPU 上,维护开销较小。
图 4. 采用 LRU 驱逐策略的 RadixAttention 操作示例,分九个步骤进行说明。
图 4 演示了基数树响应各种请求的动态演变。这些请求包括两个聊天会话、一批小样本学习查询和自洽性抽样。每个树边缘都带有一个标签,表示子字符串或 token 序列。节点采用颜色编码以反映不同的状态:绿色表示新添加的节点,蓝色表示在该时间点访问的缓存节点,红色表示已被驱逐的节点。
前端:使用 SGLang 轻松进行 LLM 编程
在前端,该研究提出了 SGLang,一种嵌入在 Python 中的特定于领域的语言,允许表达高级 prompt 技术、控制流、多模态、解码约束和外部交互。SGLang 函数可以通过各种后端运行,例如 OpenAI、Anthropic、Gemini 和本地模型。
图 5. 用 SGLang 实现多维文章评分。
图 5 显示了一个具体示例。它利用分支 - 解决 - 合并 prompt 技术实现多维文章评分。该函数使用 LLM 从多个维度评估文章的质量,合并判断,生成摘要,并分配最终等级。突出显示的区域说明了 SGLang API 的使用。(1) fork 创建 prompt 的多个并行副本。(2) gen 调用 LLM 生成并将结果存储在变量中。该调用是非阻塞的,因此它允许多个生成调用在后台同时运行。(3) [variable_name] 检索生成的结果。(4) 选择对生成施加约束。(5) run 使用其参数执行 SGLang 函数。
给定这样一个 SGLang 程序,我们可以通过解释器执行它,也可以将其跟踪为数据流图并使用图执行器运行它。后一种情况为一些潜在的编译器优化开辟了空间,例如代码移动、指令选择和自动调整。
SGLang 的语法很大程度上受到 Guidance 的启发,并引入了新的原语,还处理程序内并行性和批处理。所有这些新功能都有助于 SGLang 的出色性能。
基准测试
研究团队在常见的 LLM 工作负载上测试了其系统,并报告了所实现的吞吐量。
具体来说,该研究在 1 个 NVIDIA A10G GPU (24GB) 上测试了 Llama-7B,在 8 个具有张量并行性的 NVIDIA A10G GPU 上使用 FP16 精度测试了 Mixtral-8x7B,并使用 vllm v0.2.5、指导 v0.1.8 和 Hugging Face TGI v1.3.0 作为基准系统。
如图 1 和图 2 所示,SGLang 在所有基准测试中均优于基准系统,吞吐量提高了 5 倍。它在延迟方面也表现出色,特别是对于第一个 token 延迟,其中前缀缓存命中可以带来显著的好处。这些改进归功于 RadixAttention 的自动 KV 缓存复用、解释器实现的程序内并行性以及前端和后端系统的协同设计。此外,消融研究表明,即使没有缓存命中,也没有明显的开销,这会导致在运行时始终启用 RadixAttention。
参考链接:https://lmsys.org/blog/2024-01-17-sglang/
本篇关于《LLM接口实现前后端系统合作,提升吞吐量5倍》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!

- 上一篇
- Goroutines 通信通道仅被消费一次

- 下一篇
- 请求头不可获取
-
- 科技周边 · 人工智能 | 10小时前 | 预防措施
- 豆包AI导出失败?常见错误代码解析及解决方案
- 285浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 |
- 东风猛士M817亮相上海车展最“华”越野车
- 292浏览 收藏
-
- 科技周边 · 人工智能 | 13小时前 |
- 岚图FREE+上海车展亮相,搭载华为ADS4.0,6月预售
- 501浏览 收藏
-
- 科技周边 · 人工智能 | 15小时前 |
- 用豆包A/表情包变现攻略及方法
- 196浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 毕业宝AIGC检测
- 毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
- 18次使用
-
- AI Make Song
- AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
- 29次使用
-
- SongGenerator
- 探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
- 27次使用
-
- BeArt AI换脸
- 探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
- 29次使用
-
- 协启动
- SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
- 31次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览