打入AI底层!NUS尤洋团队用扩散模型构建神经网络参数,LeCun点赞
新加坡国立大学尤洋团队与加州大学伯克利分校和 Meta AI 实验室合作,提出了一种利用扩散模型生成神经网络参数的新方法。这项突破性工作使研究人员能够以比直接训练快 44 倍的速度生成神经网络参数,而不会损失性能。该研究团队将自编码器与扩散模型相结合,创建了一种能够从随机噪声中合成神经网络参数潜在表示的模型。
扩散模型,迎来了一项重大新应用——
像Sora生成视频一样,给神经网络生成参数,直接打入了AI的底层!
这就是新加坡国立大学尤洋教授团队联合UCB、Meta AI实验室等机构最新开源的研究成果。
具体来说,研究团队提出了一种用于生成神经网络参数的扩散模型p(arameter)-diff。
用它来生成网络参数,速度比直接训练最多提高44倍,而且表现毫不逊色。
该模型一经发布后,在AI社区迅速引起了激烈的讨论,圈内专家对其表现出了与普通人看到Sora时一样的惊叹态度。
甚至有人直接惊呼,这基本上相当于AI在创造新的AI了。
就连AI巨头LeCun看了之后,也点赞了这一成果,表示这真的是个cute idea。
而实质上,p-diff也确实具有和Sora一样重大的意义,对此同实验室的Fuzhao Xue(薛复昭)博士进行了详细解释:
Sora生成高维数据,即视频,这使得Sora成为世界模拟器(从一个维度接近AGI)。
而这项工作,神经网络扩散,可以生成模型中的参数,具有成为元世界级学习器/优化器的潜力,从另一个新的重要维度向AGI迈进。
言归正传,p-diff到底是如何生成神经网络参数的呢?
将自编码器与扩散模型结合
要弄清这个问题,首先要了解一下扩散模型和神经网络各自的工作特点。
扩散生成过程,是从随机分布到高度特定分布的转变,通过复合噪声添加,将视觉信息降级为简单噪声分布。
而神经网络训练,同样遵循这样的转变过程,也同样可以通过添加噪声的方式来降级,研究人员正是在这一特点的启发之下提出p-diff方法的。
从结构上看,p-diff是研究团队在标准潜扩散模型的基础之上,结合自编码器设计的。
研究者首先从训练完成、表现较好的网络参数中选取一部分,并展开为一维向量形式。
然后用自编码器从一维向量中提取潜在表示,作为扩散模型的训练数据,这样做可以捕捉到原有参数的关键特征。
训练过程中,研究人员让p-diff通过正向和反向过程来学习参数的分布,完成后,扩散模型像生成视觉信息的过程一样,从随机噪声中合成这些潜在表示。
最后,新生成的潜在表示再被与编码器对应的解码器还原成网络参数,并用于构建新模型。
下图是通过p-diff、使用3个随机种子从头开始训练的ResNet-18模型的参数分布,展示了不同层之间以及同一层不同参数之间的分布模式。
为了评估p-diff所生成参数的质量,研究人员利用3种类型、每种两个规模的神经网络,在8个数据集上对其进行了测试。
下表中,每组的三个数字依次表示原始模型、集成模型和用p-diff生成的模型的测评成绩。
结果可以看到,用p-diff生成的模型表现基本都接近甚至超过了人工训练的原始模型。
效率上,在不损失准确度的情况下,p-diff生成ResNet-18网络的速度是传统训练的15倍,生成Vit-Base的速度更是达到了44倍。
额外的测试结果证明,p-diff生成的模型与训练数据有显著差异。
从下图(a)可以看到,p-diff生成的模型之间的相似度低于各原始模型之间的相似度,以及p-diff与原始模型的相似度。
而从(b)和(c)中可知,与微调、噪声添加方式相比,p-diff的相似度同样更低。
这些结果说明,p-diff是真正生成了新的模型,而非仅仅记忆训练样本,同时也表明其具有良好的泛化能力,能够生成与训练数据不同的新模型。
目前,p-diff的代码已经开源,感兴趣的话可以到GitHub中查看。
论文地址:https://arxiv.org/abs/2402.13144
GitHub:https://github.com/NUS-HPC-AI-Lab/Neural-Network-Diffusion
理论要掌握,实操不能落!以上关于《打入AI底层!NUS尤洋团队用扩散模型构建神经网络参数,LeCun点赞》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

- 上一篇
- 如果使用 sqlserver 驱动程序,map 对现有键返回 0

- 下一篇
- 如何创建带有 Status 字段的 Kubernetes 对象?
-
- 科技周边 · 人工智能 | 8小时前 |
- ChatGPT摘要优化技巧全解析
- 116浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- DeepSeek API调用教程及使用指南
- 288浏览 收藏
-
- 科技周边 · 人工智能 | 10小时前 |
- 豆包AI识别GPU问题解决方法
- 374浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 | AI工具 DeepArt 照片转马赛克 DeepDreamGenerator Prisma
- DeepArt照片转马赛克教程详解
- 157浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 | AI生成 CanvaAI 民间故事 文化设计 MagicDesign
- CanvaAI融入民间故事元素教程
- 370浏览 收藏
-
- 科技周边 · 人工智能 | 12小时前 |
- 岚图梦想家预售:90%用户选插混版
- 241浏览 收藏
-
- 科技周边 · 人工智能 | 13小时前 |
- 豆包AI索引优化技巧分享
- 254浏览 收藏
-
- 科技周边 · 人工智能 | 13小时前 |
- 用豆包生成GraphQLSchema的完整教程
- 419浏览 收藏
-
- 科技周边 · 人工智能 | 14小时前 |
- DALL·E图像生成教程与参数详解
- 303浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 514次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- AI Mermaid流程图
- SEO AI Mermaid 流程图工具:基于 Mermaid 语法,AI 辅助,自然语言生成流程图,提升可视化创作效率,适用于开发者、产品经理、教育工作者。
- 727次使用
-
- 搜获客【笔记生成器】
- 搜获客笔记生成器,国内首个聚焦小红书医美垂类的AI文案工具。1500万爆款文案库,行业专属算法,助您高效创作合规、引流的医美笔记,提升运营效率,引爆小红书流量!
- 740次使用
-
- iTerms
- iTerms是一款专业的一站式法律AI工作台,提供AI合同审查、AI合同起草及AI法律问答服务。通过智能问答、深度思考与联网检索,助您高效检索法律法规与司法判例,告别传统模板,实现合同一键起草与在线编辑,大幅提升法律事务处理效率。
- 760次使用
-
- TokenPony
- TokenPony是讯盟科技旗下的AI大模型聚合API平台。通过统一接口接入DeepSeek、Kimi、Qwen等主流模型,支持1024K超长上下文,实现零配置、免部署、极速响应与高性价比的AI应用开发,助力专业用户轻松构建智能服务。
- 825次使用
-
- 迅捷AIPPT
- 迅捷AIPPT是一款高效AI智能PPT生成软件,一键智能生成精美演示文稿。内置海量专业模板、多样风格,支持自定义大纲,助您轻松制作高质量PPT,大幅节省时间。
- 714次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览