当前位置:首页 > 文章列表 > Golang > Go教程 > Golang协程池gopool设计与实现

Golang协程池gopool设计与实现

来源:脚本之家 2023-01-07 11:52:56 0浏览 收藏

知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个Golang开发实战,手把手教大家学习《Golang协程池gopool设计与实现》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!

Goroutine

Goroutine 是 Golang 提供的一种轻量级线程,我们通常称之为「协程」,相比较线程,创建一个协程的成本是很低的。所以你会经常看到 Golang 开发的应用出现上千个协程并发的场景。

Goroutine 的优势:

  • 与线程相比,Goroutines 成本很低。

它们的堆栈大小只有几 kb,堆栈可以根据应用程序的需要增长和缩小,context switch 也很快,而在线程的情况下,堆栈大小必须指定并固定。

  • Goroutine 被多路复用到更少数量的 OS 线程。

一个包含数千个 Goroutine 的程序中可能只有一个线程。如果该线程中的任何 Goroutine 阻塞等待用户输入,则创建另一个 OS 线程并将剩余的 Goroutine 移动到新的 OS 线程。所有这些都由运行时处理,作为开发者无需耗费心力关心,这也使得我们有很干净的 API 来支持并发。

  • Goroutines 使用 channel 进行通信。

channel 的设计有效防止了在使用 Goroutine 访问共享内存时发生竞争条件(race conditions) 。channel 可以被认为是 Goroutine 进行通信的管道。

下文中我们会以「协程」来代指 Goroutine。

协程池

在高并发场景下,我们可能会启动大量的协程来处理业务逻辑。协程池是一种利用池化技术,复用对象,减少内存分配的频率以及协程创建开销,从而提高协程执行效率的技术。

最近抽空了解了字节官方开源的 gopkg 库提供的 gopool 协程池实现,感觉还是很高质量的,代码也非常简洁清晰,而且 Kitex 底层也在使用 gopool 来管理协程,这里我们梳理一下设计和实现。

gopool

Repository:https://github.com/bytedance/gopkg/tree/develop/util/gopool

gopool is a high-performance goroutine pool which aims to reuse goroutines and limit the number of goroutines. It is an alternative to the go keyword.

了解官方 README 就会发现gopool的用法其实非常简单,将曾经我们经常使用的 go func(){...} 替换为 gopool.Go(func(){...}) 即可。

此时 gopool 将会使用默认的配置来管理你启动的协程,你也可以选择针对业务场景配置池子大小,以及扩容上限。

old:

go func() {
	// do your job
}()

new:

import (
    "github.com/bytedance/gopkg/util/gopool"
)

gopool.Go(func(){
	/// do your job
})

核心实现

下面我们来看看gopool是怎样实现协程池管理的。

Pool

Pool 是一个定义了协程池能力的接口。

type Pool interface {
	// 池子的名称
	Name() string
        
	// 设置池子内Goroutine的容量
	SetCap(cap int32)
        
	// 执行 f 函数
	Go(f func())
        
	// 带 ctx,执行 f 函数
	CtxGo(ctx context.Context, f func())
        
	// 设置发生panic时调用的函数
	SetPanicHandler(f func(context.Context, interface{}))
}

gopool 提供了这个接口的默认实现(即下面即将介绍的pool),当我们直接调用 gopool.CtxGo 时依赖的就是这个。

这样的设计模式在 Kitex 中也经常出现,所有的依赖均设计为接口,便于随后扩展,底层提供一个默认的实现暴露出去,这样对调用方也很友好。

type pool struct {
	// 池子名称
	name string

	// 池子的容量, 即最大并发工作的 goroutine 的数量
	cap int32
        
	// 池子配置
	config *Config
        
	// task 链表
	taskHead  *task
	taskTail  *task
	taskLock  sync.Mutex
	taskCount int32

	// 记录当前正在运行的 worker 的数量
	workerCount int32

	// 当 worker 出现panic时被调用
	panicHandler func(context.Context, interface{})
}

// NewPool 创建一个新的协程池,初始化名称,容量,配置
func NewPool(name string, cap int32, config *Config) Pool {
	p := &pool{
		name:   name,
		cap:    cap,
		config: config,
	}
	return p
}

调用 NewPool 获取了以 Pool 的形式返回的 pool 结构体。

Task

type task struct {
	ctx context.Context
	f   func()

	next *task
}

task 是一个链表结构,可以把它理解为一个待执行的任务,它包含了当前节点需要执行的函数f, 以及指向下一个task的指针。

综合前一节 pool 的定义,我们可以看到,一个协程池 pool 对应了一组task

pool 维护了指向链表的头尾的两个指针:taskHeadtaskTail,以及链表的长度taskCount 和对应的锁 taskLock

Worker

type worker struct {
	pool *pool
}

一个 worker 就是逻辑上的一个执行器,它唯一对应到一个协程池 pool。当一个worker被唤起,将会开启一个goroutine ,不断地从 pool 中的 task链表获取任务并执行。

func (w *worker) run() {
	go func() {
		for {
                        // 声明即将执行的 task
			var t *task
                        
                        // 操作 pool 中的 task 链表,加锁
			w.pool.taskLock.Lock()
			if w.pool.taskHead != nil {
                                // 拿到 taskHead 准备执行
				t = w.pool.taskHead
                                
                                // 更新链表的 head 以及数量
				w.pool.taskHead = w.pool.taskHead.next
				atomic.AddInt32(&w.pool.taskCount, -1)
			}
                        // 如果前一步拿到的 taskHead 为空,说明无任务需要执行,清理后返回
			if t == nil {
				w.close()
				w.pool.taskLock.Unlock()
				w.Recycle()
				return
			}
			w.pool.taskLock.Unlock()
                        
                        // 执行任务,针对 panic 会recover,并调用配置的 handler
			func() {
				defer func() {
					if r := recover(); r != nil {
						msg := fmt.Sprintf("GOPOOL: panic in pool: %s: %v: %s", w.pool.name, r, debug.Stack())
						logger.CtxErrorf(t.ctx, msg)
						if w.pool.panicHandler != nil {
							w.pool.panicHandler(t.ctx, r)
						}
					}
				}()
				t.f()
			}()
			t.Recycle()
		}
	}()
}

整体来看

看到这里,其实就能把整个流程串起来了。我们来看看对外的接口 CtxGo(context.Context, f func()) 到底做了什么?

func Go(f func()) {
	CtxGo(context.Background(), f)
}

func CtxGo(ctx context.Context, f func()) {
	defaultPool.CtxGo(ctx, f)
}

func (p *pool) CtxGo(ctx context.Context, f func()) {

        // 创建一个 task 对象,将 ctx 和待执行的函数赋值
	t := taskPool.Get().(*task)
	t.ctx = ctx
	t.f = f
        
        // 将 task 插入 pool 的链表的尾部,更新链表数量
	p.taskLock.Lock()
	if p.taskHead == nil {
		p.taskHead = t
		p.taskTail = t
	} else {
		p.taskTail.next = t
		p.taskTail = t
	}
	p.taskLock.Unlock()
	atomic.AddInt32(&p.taskCount, 1)
        
        
	// 以下两个条件满足时,创建新的 worker 并唤起执行:
	// 1. task的数量超过了配置的限制 
	// 2. 当前运行的worker数量小于上限(或无worker运行)
	if (atomic.LoadInt32(&p.taskCount) >= p.config.ScaleThreshold && p.WorkerCount() 

相信看了代码注释,大家就能理解发生了什么。

gopool 会自行维护一个 defaultPool,这是一个默认的 pool 结构体,在引入包的时候就进行初始化。当我们直接调用 gopool.CtxGo() 时,本质上是调用了 defaultPool 的同名方法

func init() {
	defaultPool = NewPool("gopool.DefaultPool", 10000, NewConfig())
}

const (
	defaultScalaThreshold = 1
)

// Config is used to config pool.
type Config struct {
	// 控制扩容的门槛,一旦待执行的 task 超过此值,且 worker 数量未达到上限,就开始启动新的 worker
	ScaleThreshold int32
}

// NewConfig creates a default Config.
func NewConfig() *Config {
	c := &Config{
		ScaleThreshold: defaultScalaThreshold,
	}
	return c
}

defaultPool 的名称为 gopool.DefaultPool,池子容量一万,扩容下限为 1。

当我们调用 CtxGo时,gopool 就会更新维护的任务链表,并且判断是否需要扩容 worker

  • 若此时已经有很多 worker 启动(底层一个 worker 对应一个 goroutine),不需要扩容,就直接返回。
  • 若判断需要扩容,就创建一个新的worker,并调用 worker.run()方法启动,各个worker会异步地检查 pool 里面的任务链表是否还有待执行的任务,如果有就执行。

三个角色的定位

  • task 是一个待执行的任务节点,同时还包含了指向下一个任务的指针,链表结构;
  • worker 是一个实际执行任务的执行器,它会异步启动一个 goroutine 执行协程池里面未执行的task
  • pool 是一个逻辑上的协程池,对应了一个task链表,同时负责维护task状态的更新,以及在需要的时候创建新的 worker

使用 sync.Pool 进行性能优化

其实到这个地方,gopool已经是一个代码简洁清晰的协程池库了,但是性能上显然有改进空间,所以gopool的作者应用了多次 sync.Pool 来池化对象的创建,复用woker和task对象。

这里建议大家直接看源码,其实在上面的代码中已经有所涉及。

  • task 池化
var taskPool sync.Pool

func init() {
	taskPool.New = newTask
}

func newTask() interface{} {
	return &task{}
}

func (t *task) Recycle() {
	t.zero()
	taskPool.Put(t)
}
  • worker 池化
var workerPool sync.Pool

func init() {
	workerPool.New = newWorker
}

func newWorker() interface{} {
	return &worker{}
}

func (w *worker) Recycle() {
	w.zero()
	workerPool.Put(w)
}

本篇关于《Golang协程池gopool设计与实现》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于Golang的相关知识,请关注golang学习网公众号!

版本声明
本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
golang gorm的Callbacks事务回滚对象操作示例golang gorm的Callbacks事务回滚对象操作示例
上一篇
golang gorm的Callbacks事务回滚对象操作示例
golang gorm的预加载及软删硬删的数据操作示例
下一篇
golang gorm的预加载及软删硬删的数据操作示例
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • SEO标题魔匠AI:高质量学术写作平台,毕业论文生成与优化专家
    魔匠AI
    SEO摘要魔匠AI专注于高质量AI学术写作,已稳定运行6年。提供无限改稿、选题优化、大纲生成、多语言支持、真实参考文献、数据图表生成、查重降重等全流程服务,确保论文质量与隐私安全。适用于专科、本科、硕士学生及研究者,满足多语言学术需求。
    11次使用
  • PPTFake答辩PPT生成器:一键生成高效专业的答辩PPT
    PPTFake答辩PPT生成器
    PPTFake答辩PPT生成器,专为答辩准备设计,极致高效生成PPT与自述稿。智能解析内容,提供多样模板,数据可视化,贴心配套服务,灵活自主编辑,降低制作门槛,适用于各类答辩场景。
    26次使用
  • SEO标题Lovart AI:全球首个设计领域AI智能体,实现全链路设计自动化
    Lovart
    SEO摘要探索Lovart AI,这款专注于设计领域的AI智能体,通过多模态模型集成和智能任务拆解,实现全链路设计自动化。无论是品牌全案设计、广告与视频制作,还是文创内容创作,Lovart AI都能满足您的需求,提升设计效率,降低成本。
    27次使用
  • 美图AI抠图:行业领先的智能图像处理技术,3秒出图,精准无误
    美图AI抠图
    美图AI抠图,依托CVPR 2024竞赛亚军技术,提供顶尖的图像处理解决方案。适用于证件照、商品、毛发等多场景,支持批量处理,3秒出图,零PS基础也能轻松操作,满足个人与商业需求。
    35次使用
  • SEO标题PetGPT:智能桌面宠物程序,结合AI对话的个性化陪伴工具
    PetGPT
    SEO摘要PetGPT 是一款基于 Python 和 PyQt 开发的智能桌面宠物程序,集成了 OpenAI 的 GPT 模型,提供上下文感知对话和主动聊天功能。用户可高度自定义宠物的外观和行为,支持插件热更新和二次开发。适用于需要陪伴和效率辅助的办公族、学生及 AI 技术爱好者。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码