当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > MIT博士生开源项目:利用Vision Pro进行实时训练机器狗受欢迎

MIT博士生开源项目:利用Vision Pro进行实时训练机器狗受欢迎

来源:51CTO.COM 2024-03-16 11:42:17 0浏览 收藏

麻省理工学院博士生朴英孝开源了一个名为 Tracking Steamer 的项目,利用 Vision Pro 的手部追踪功能,成功实现了对机器狗的实时控制。该项目通过 ARKit 追踪人类动作,并将数据实时传输到机器狗设备,使得非专业人员也能为机器人提供精准的训练数据。这项技术融合了具身智能和模仿学习算法,为人类与机器人互动开辟了新的可能性。

Vision Pro又现火爆新玩法,这回还和具身智能联动了~

就像这样,MIT小哥利用Vision Pro的手部追踪功能,成功实现了对机器狗的实时控制。

用Vision Pro实时训练机器狗!MIT博士生开源项目火了

不仅开门这样的动作能精准get:

用Vision Pro实时训练机器狗!MIT博士生开源项目火了

也几乎没什么延时。

用Vision Pro实时训练机器狗!MIT博士生开源项目火了

Demo一出,不仅网友们大赞鹅妹子嘤,各路具身智能研究人员也嗨了。

比如这位准清华叉院博士生:

用Vision Pro实时训练机器狗!MIT博士生开源项目火了

还有人大胆预测:这就是我们与下一代机器互动的方式。

用Vision Pro实时训练机器狗!MIT博士生开源项目火了

项目如何实现,作者小哥朴英孝(Younghyo Park)已经在GitHub上开源。相关App可以直接在Vision Pro的App Store上下载。

用Vision Pro实时训练机器狗!MIT博士生开源项目火了

用Vision Pro训练机器狗

具体来看看作者小哥开发的App——Tracking Steamer

顾名思义,这个应用程序旨在利用Vision Pro追踪人类动作,并将这些动作数据实时传输到同一WiFi下的其他机器人设备上。

用Vision Pro实时训练机器狗!MIT博士生开源项目火了

动作追踪的部分,主要依靠苹果的ARKit库来实现。

其中头部追踪调用的是queryDeviceAnchor。用户可以通过长按数字表冠来重置头部框架到当前位置。

手腕和手指追踪则通过HandTrackingProvider实现。它能够追踪左右手腕相对于地面框架的位置和方向,以及每只手25个手指关节相对于手腕框架的姿态。

用Vision Pro实时训练机器狗!MIT博士生开源项目火了

网络通信方面,这个App使用gRPC作为网络通信协议来流式传输数据。这使得数据能被更多设备订阅,包括Linux、Mac和Windows设备。

另外,为了方便数据传输,作者小哥还准备了一个Python API,让开发者能够通过编程方式订阅和接收从Vision Pro流式传输的追踪数据。

API返回的数据是字典形式,包含头部、手腕、手指的SE(3)姿态信息,即三维位置和方向。开发者可以直接在Python中处理这些数据,用于对机器人的进一步分析和控制。

用Vision Pro实时训练机器狗!MIT博士生开源项目火了

就像不少专业人士所指出的那样,别看机器狗的动作还是由人类控制,事实上,相比于“操控”本身,结合模仿学习算法,人类在这个过程中,更像是机器人的教练。

而Vision Pro通过追踪用户的动作,提供了一种直观、简单的交互方式,使得非专业人员也能够为机器人提供精准的训练数据。

作者本人也在论文中写道:

在不久的将来,人们可能会像日常戴眼镜一样佩戴Vision Pro这样的设备,想象一下我们可以从这个过程中收集多少数据!

这是一个充满前景的数据源,机器人可以从中学习到,人类是如何与现实世界交互的。

最后,提醒一下,如果你想上手试一试这个开源项目,那么除了必备一台Vision Pro之外,还需要准备:

  • 苹果开发者账户
  • Vision Pro开发者配件(Developer Strap,售价299美元)
  • 安装了Xcode的Mac电脑

嗯,看样子还是得先让苹果赚一笔了(doge)。

项目链接:https://github.com/Improbable-AI/VisionProTeleop?tab=readme-ov-file

好了,本文到此结束,带大家了解了《MIT博士生开源项目:利用Vision Pro进行实时训练机器狗受欢迎》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
分析Golang在人工智能领域的优势和难题分析Golang在人工智能领域的优势和难题
上一篇
分析Golang在人工智能领域的优势和难题
分析Linux Fuse的介绍和应用领域
下一篇
分析Linux Fuse的介绍和应用领域
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 茅茅虫AIGC检测:精准识别AI生成内容,保障学术诚信
    茅茅虫AIGC检测
    茅茅虫AIGC检测,湖南茅茅虫科技有限公司倾力打造,运用NLP技术精准识别AI生成文本,提供论文、专著等学术文本的AIGC检测服务。支持多种格式,生成可视化报告,保障您的学术诚信和内容质量。
    57次使用
  • 赛林匹克平台:科技赛事聚合,赋能AI、算力、量子计算创新
    赛林匹克平台(Challympics)
    探索赛林匹克平台Challympics,一个聚焦人工智能、算力算法、量子计算等前沿技术的赛事聚合平台。连接产学研用,助力科技创新与产业升级。
    75次使用
  • SEO  笔格AIPPT:AI智能PPT制作,免费生成,高效演示
    笔格AIPPT
    SEO 笔格AIPPT是135编辑器推出的AI智能PPT制作平台,依托DeepSeek大模型,实现智能大纲生成、一键PPT生成、AI文字优化、图像生成等功能。免费试用,提升PPT制作效率,适用于商务演示、教育培训等多种场景。
    85次使用
  • 稿定PPT:在线AI演示设计,高效PPT制作工具
    稿定PPT
    告别PPT制作难题!稿定PPT提供海量模板、AI智能生成、在线协作,助您轻松制作专业演示文稿。职场办公、教育学习、企业服务全覆盖,降本增效,释放创意!
    77次使用
  • Suno苏诺中文版:AI音乐创作平台,人人都是音乐家
    Suno苏诺中文版
    探索Suno苏诺中文版,一款颠覆传统音乐创作的AI平台。无需专业技能,轻松创作个性化音乐。智能词曲生成、风格迁移、海量音效,释放您的音乐灵感!
    81次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码