浙大团队提出基于可变形三维高斯的高质量单目动态重建方法等四篇论文收录CVPR 2024
今日不肯埋头,明日何以抬头!每日一句努力自己的话哈哈~哈喽,今天我将给大家带来一篇《浙大团队提出基于可变形三维高斯的高质量单目动态重建方法等四篇论文收录CVPR 2024》,主要内容是讲解等等,感兴趣的朋友可以收藏或者有更好的建议在评论提出,我都会认真看的!大家一起进步,一起学习!
单目动态场景(Monocular Dynamic Scene)是指使用单眼摄像头观察和分析的动态环境,其中物体可以在场景中自由移动。单目动态场景重建在理解环境中的动态变化、预测物体运动轨迹以及生成动态数字资产等任务中具有关键意义。利用单目视觉技术,可以实现动态场景的三维重建和模型估计,帮助我们更好地理解和处理动态环境中的各种情况。这种技术不仅可应用于计算机视觉领域,还可以在自动驾驶、增强现实和虚拟现实等领域发挥重要作用。通过单目动态场景重建,我们可以更准确地捕捉环境中物体的运动
随着以神经辐射场(Neural Radiance Field, NeRF)为代表的神经渲染的兴起,越来越多的工作开始使用隐式表征(implicit representation)进行动态场景的三维重建。尽管基于 NeRF 的一些代表工作,如 D-NeRF,Nerfies,K-planes 等已经取得了令人满意的渲染质量,他们仍然距离真正的照片级真实渲染(photo-realistic rendering)存在一定的距离。
来自浙江大学和字节跳动的研究团队指出,上述问题的核心在于基于光线投射(ray casting)的 NeRF pipeline 通过逆向映射(backward-flow)将观测空间(observation space)映射到规范空间(canonical space)时出现了准确性和清晰性方面的挑战。逆向映射对于学习结构的收敛并不理想,导致目前的方法在 D-NeRF 数据集上仅能达到 30+ 级别的 PSNR 渲染指标。
为了解决这个挑战,该研究团队提出了一种基于光栅化的单目动态场景建模流程。他们首次将变形场与3D高斯结合,创造了一种新的方法,实现了高质量的重建和新视角渲染。这项研究论文《Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction》已被计算机视觉领域顶级国际学术会议CVPR 2024接受。这项工作中独特的地方在于,它是首个将变形场应用于3D高斯以拓展到单目动态场景的研究。
项目主页:https://ingra14m.github.io/Deformable-Gaussians/
论文链接:https://arxiv.org/abs/2309.13101
代码:https://github.com/ingra14m/Deformable-3D-Gaussians
实验结果表明,变形场能够有效地将规范空间中的3D高斯前向映射精确地映射到观测空间。在D-NeRF数据集上,实现了10%以上的PSNR提升。此外,在真实场景中即使相机位姿不够准确,也能够增加渲染细节。
图 1 HyperNeRF 真实场景的实验结果。
相关工作
动态场景重建一直以来是三维重建的热点问题。随着以 NeRF 为代表的神经渲染实现了高质量的渲染,动态重建领域涌现出了一系列以隐式表征作为基础的工作。D-NeRF 和 Nerfies 在 NeRF 光线投射 pipeline 的基础上引入了变形场,实现了稳健的动态场景重建。TiNeuVox,K-Planes 和 Hexplanes 在此基础上引入了网格结构,大大加速了模型的训练过程,渲染速度有一定的提高。然而这些方法都基于逆向映射,无法真正实现高质量的规范空间和变形场的解耦。
3D 高斯泼溅是一种基于光栅化的点云渲染 pipeline。其 CUDA 定制的可微高斯光栅化 pipeline 和创新的致密化使得 3D 高斯不仅实现了 SOTA 的渲染质量,还实现了实时渲染。Dynamic 3D 高斯首先将静态的 3D 高斯拓展到了动态领域。然而,其只能处理多目场景非常严重地制约了其应用于更通用的情况,如手机拍摄等单目场景。
研究思想
Deformable-GS 的核心在于将静态的 3D 高斯拓展到单目动态场景。每一个 3D 高斯携带位置,旋转,缩放,不透明度和 SH 系数用于图像层级的渲染。根据 3D 高斯 alpha-blend 的公式,不难发现,随时间变化的位置,以及控制高斯形状的旋转和缩放是决定动态 3D 高斯的决定性参数。然而,不同于传统的基于点云的渲染方法,3D 高斯在初始化之后,位置,透明度等参数会随着优化不断更新。这给动态高斯的学习增加了难度。
该研究创新性地提出了变形场与 3D 高斯联合优化的动态场景渲染框架。具体来说,该研究将 COLMAP 或随机点云初始化的 3D 高斯视作规范空间,随后通过变形场,以规范空间中 3D 高斯的坐标信息作为输入,预测每一个 3D 高斯随时间变化的位置和形状参数。利用变形场,该研究可以将规范空间的 3D 高斯变换到观测空间用于光栅化渲染。这一策略并不会影响 3D 高斯的可微光栅化 pipeline,经过其计算得到的梯度可以用于更新规范空间 3D 高斯的参数。
此外,引入变形场有利于动作幅度较大部分的高斯致密化。这是因为动作幅度较大的区域变形场的梯度也会相对较高,从而指导相应区域在致密化的过程中得到更精细的调控。即使规范空间 3D 高斯的数量和位置参数在初期也在不断更新,但实验结果表明,这种联合优化的策略可以最终得到稳健的收敛结果。大约经过 20000 轮迭代,规范空间的 3D 高斯的位置参数几乎不再变化。
研究团队发现真实场景的相机位姿往往不够准确,而动态场景更加剧了这一问题。这对于基于神经辐射场的结构来说并不会产生较大的影响,因为神经辐射场基于多层感知机(Multilayer Perceptron,MLP),是一个非常平滑的结构。但是 3D 高斯是基于点云的显式结构,略微不准确的相机位姿很难通过高斯泼溅得到较为稳健地矫正。
为了缓解这个问题,该研究创新地引入了退火平滑训练(Annealing Smooth Training,AST)。该训练机制旨在初期平滑 3D 高斯的学习,在后期增加渲染的细节。这一机制的引入不仅提高了渲染的质量,而且大幅度提高了时间插值任务的稳定性与平滑性。
图 2 展示了该研究的 pipeline,详情请参见论文原文。
图 2 该研究的 pipeline。
结果展示
该研究首先在动态重建领域被广泛使用的 D-NeRF 数据集上进行了合成数据集的实验。从图 3 的可视化结果中不难看出,Deformable-GS 相比于之前的方法有着非常巨大的渲染质量提升。
图 3 该研究在 D-NeRF 数据集上的定性实验对比结果。
该研究提出的方法不仅在视觉效果上取得了大幅度的提升,在渲染的定量指标上也有着相应的改进。值得注意的是,研究团队发现 D-NeRF 数据集的 Lego 场景存在错误,即训练集和测试集的场景具有微小的差别。这体现在 Lego 模型铲子的翻转角度不一致。这也是为什么之前方法在 Lego 场景的指标无法提高的根本原因。为了实现有意义的比较,该研究使用了 Lego 的验证集作为指标测量的基准。
图 4 在合成数据集上的定量比较。
如图 4 所示,该研究在全分辨率(800x800)下对比了 SOTA 方法,其中包括了 CVPR 2020 的 D-NeRF,Sig Asia 2022 的 TiNeuVox 和 CVPR2023 的 Tensor4D,K-planes。该研究提出的方法在各个渲染指标(PSNR、SSIM、LPIPS),各个场景下都取得了大幅度的提高。
该研究提出的方法不仅能够适用于合成场景,在相机位姿不够准确的真实场景也取得了 SOTA 结果。如图 5 所示,该研究在 NeRF-DS 数据集上与 SOTA 方法进行了对比。实验结果表明,即使没有对高光反射表面进行特殊处理,该研究提出的方法依旧能够超过专为高光反射场景设计的 NeRF-DS,取得了最佳的渲染效果。
图 5 真实场景方法对比。
图6 深度可视化。
作者简介
论文通讯作者为浙江大学计算机科学与技术学院金小刚教授。
Email: jin@cad.zju.edu.cn
个人主页:http://www.cad.zju.edu.cn/home/jin/
今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

- 上一篇
- 在Go基准测试中为什么同一份代码的执行结果会有差异?

- 下一篇
- 判断数组元素数量的PHP编程指南
-
- 科技周边 · 人工智能 | 1小时前 |
- 港大与Adobe联手推出PixelFlow图像生成模型
- 135浏览 收藏
-
- 科技周边 · 人工智能 | 3小时前 | 摩尔线程 招聘诈骗 @mthreads.com 官方客服 法律责任
- 摩尔线程重磅声明发布
- 406浏览 收藏
-
- 科技周边 · 人工智能 | 5小时前 |
- 玛莎拉蒂GT2Stradale国内首秀售414.5万
- 226浏览 收藏
-
- 科技周边 · 人工智能 | 7小时前 |
- 美股反弹艰难,三大指数涨跌不一,英伟达跌3%
- 301浏览 收藏
-
- 科技周边 · 人工智能 | 8小时前 |
- 本田烨品牌GT车型上海车展首发亮相
- 358浏览 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 484次学习
-
- 笔灵AI生成答辩PPT
- 探索笔灵AI生成答辩PPT的强大功能,快速制作高质量答辩PPT。精准内容提取、多样模板匹配、数据可视化、配套自述稿生成,让您的学术和职场展示更加专业与高效。
- 28次使用
-
- 知网AIGC检测服务系统
- 知网AIGC检测服务系统,专注于检测学术文本中的疑似AI生成内容。依托知网海量高质量文献资源,结合先进的“知识增强AIGC检测技术”,系统能够从语言模式和语义逻辑两方面精准识别AI生成内容,适用于学术研究、教育和企业领域,确保文本的真实性和原创性。
- 42次使用
-
- AIGC检测-Aibiye
- AIbiye官网推出的AIGC检测服务,专注于检测ChatGPT、Gemini、Claude等AIGC工具生成的文本,帮助用户确保论文的原创性和学术规范。支持txt和doc(x)格式,检测范围为论文正文,提供高准确性和便捷的用户体验。
- 39次使用
-
- 易笔AI论文
- 易笔AI论文平台提供自动写作、格式校对、查重检测等功能,支持多种学术领域的论文生成。价格优惠,界面友好,操作简便,适用于学术研究者、学生及论文辅导机构。
- 51次使用
-
- 笔启AI论文写作平台
- 笔启AI论文写作平台提供多类型论文生成服务,支持多语言写作,满足学术研究者、学生和职场人士的需求。平台采用AI 4.0版本,确保论文质量和原创性,并提供查重保障和隐私保护。
- 42次使用
-
- GPT-4王者加冕!读图做题性能炸天,凭自己就能考上斯坦福
- 2023-04-25 501浏览
-
- 单块V100训练模型提速72倍!尤洋团队新成果获AAAI 2023杰出论文奖
- 2023-04-24 501浏览
-
- ChatGPT 真的会接管世界吗?
- 2023-04-13 501浏览
-
- VR的终极形态是「假眼」?Neuralink前联合创始人掏出新产品:科学之眼!
- 2023-04-30 501浏览
-
- 实现实时制造可视性优势有哪些?
- 2023-04-15 501浏览