当前位置:首页 > 文章列表 > 科技周边 > 人工智能 > Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

来源:51CTO.COM 2024-03-13 09:15:23 0浏览 收藏

对于一个科技周边开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)》,主要介绍了,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!

原标题:Anything in Any Scene: Photorealistic Video Object Insertion

论文链接:https://arxiv.org/pdf/2401.17509.pdf

代码链接:https://github.com/AnythingInAnyScene/anything_in_anyscene

作者单位:小鹏汽车

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

论文思路

逼真的(realistic)视频仿真(video simulation)在从虚拟现实到电影制作等各种应用领域都显示出巨大的潜力。尤其是在现实世界中捕捉视频不切实际或成本高昂的情况下。视频仿真中的现有方法通常无法准确地建模光照环境、表示物体几何形状或实现高水平的照片级真实感。本文提出了 Anything in Any Scene ,这是一种新颖且通用的真实视频仿真框架,可以将任何物体无缝插入到现有的动态视频中,并强调物理真实感。本文提出的总体框架包含三个关键过程:1)将真实的物体集成到给定的场景视频中,并放置适当的位置以确保几何真实感(geometric realism);2)估计天空和环境光照分布并模拟真实阴影,增强光照真实感(light realism);3)采用风格迁移网络来细化最终的视频输出,以最大限度地提高照片真实感(photorealism)。本文通过实验证明 Anything in Any Scene 框架可以生成具有出色的几何真实感、光照真实感和照片真实感的仿真视频。通过显着缓解与视频数据生成相关的挑战,本文的框架为获取高质量视频提供了高效且经济高效的解决方案。此外,其应用远远超出了视频数据增强的范围,在虚拟现实、视频编辑和各种其他以视频为中心的应用中显示出广阔的潜力。

主要贡献

本文引入了一种新颖且可扩展的 Anything in Any Scene 视频仿真框架,能够将任何物体集成到任何动态场景视频中。

这篇文章的结构独具特色,着重于在视频仿真中保持几何、光照和照片的真实感,以确保输出结果的高质量和真实性。

经过广泛验证,结果表明该框架具备制作高度逼真视频仿真的能力,从而显著拓展了该领域的应用范围和发展潜力。

论文设计

图像和视频仿真在从虚拟现实到电影制作的各种应用中都取得了成功。通过逼真的图像和视频仿真生成多样化和高质量的视觉内容的能力具有推动这些领域发展的潜力,能够引入新的可能性和应用。尽管在现实世界中捕获的图像和视频的真实性非常宝贵,但它们经常受到长尾分布的限制。这导致常见场景的代表性过高,而罕见但关键的情况的代表性不足,从而提出了称为 out-of-distribution problem 的挑战。通过视频采集和编辑来解决这些限制的传统方法被证明是不切实际的或成本过高,因为难以涵盖所有可能的情况。视频仿真的重要性,特别是通过将现有视频与新插入的物体相集成,对于克服这些挑战变得至关重要。通过生成大规模、多样化和逼真的视觉内容,视频仿真有助于增强虚拟现实、视频编辑和视频数据增强方面的应用。

然而,考虑物理真实性生成逼真的仿真视频仍然是一个具有挑战性的开放问题。现有方法通常因专注于特定设置而表现出局限性,特别是室内环境[9,26,45,46,57]。这些方法可能无法充分解决室外场景的复杂性,包括不同的光照条件和快速移动的物体。依赖 3D 模型配准的方法仅限于集成有限类别的物体 [12,32,40,42]。许多方法忽略了一些重要因素,例如光照环境建模、正确的物体放置和实现真实感 [12, 36]。失败的案例如图 1 所示。因此,这些限制极大地限制了它们在需要高度可扩展、几何一致和真实场景视频仿真的领域(例如自动驾驶和机器人)中的应用。

本文提出了一个用于解决这些挑战的逼真视频物体插入的综合框架 Anything in Any Scene。该框架设计具有通用性,适用于室内和室外场景,保证几何真实感、光照真实感和照片真实感等方面的物理准确性。本文的目标是创建视频仿真,不仅有利于机器学习中的视觉数据增强,而且适用于各种视频应用,例如虚拟现实和视频编辑。

本文的 Anything in Any Scene 框架的概述如图 2 所示。本文在第 3 节中详细介绍了本文新颖且可扩展的流程,用于构建场景视频和物体网格(object mesh)的多样化资产库。本文介绍了一种视觉数据查询引擎,旨在利用描述性关键词从视觉查询中高效检索相关视频片段。接下来,本文提出两种生成 3D meshes 的方法,利用现有 3D 资产以及多视图图像重建。这允许不受限制地插入任何所需的物体,即使它非常不规则或语义较弱。在第 4 节中,本文详细介绍了将物体集成到动态场景视频中的方法,重点是保持物理真实感。本文设计了第 4.1 节中描述的物体放置和稳定方法,确保插入的物体稳定地锚定(anchored)在连续的视频帧上。为了解决创建逼真的光照和阴影效果的挑战,本文估计天空和环境光照并在渲染过程中生成逼真的阴影,如第 4.2 节所述。生成的仿真视频帧不可避免地包含与现实世界捕获的视频不同的不现实的伪影,例如噪声水平、色彩保真度和清晰度方面的成像质量差异。本文在 4.3 节中采用风格迁移网络来增强照片真实感。

从本文提出的框架生成的仿真视频达到了高度的光照真实感、几何真实感和照片真实感,在质量和数量上都优于其他视频,如第 5.3 节所示。本文在5.4节中进一步展示了本文的仿真视频在训练感知算法中的应用,以验证其实用价值。Anything in Any Scene 框架能够创建大规模、低成本的视频数据集,用于具有时间效率和逼真视觉质量的数据增强,从而减轻视频数据生成的负担,并有可能改善长尾分布和分布外的挑战。凭借其通用的框架设计,Anything in Any Scene 框架可以轻松整合改进的模型和新模块,例如改进的 3D mesh 重建方法,进一步增强视频仿真性能。

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)图 1. 光照环境估计错误、物体摆放位置错误和纹理风格不真实的仿真视频帧示例,这些问题使得图像缺乏物理真实感。Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)图 2. 用于逼真视频物体插入的 Anything in Any Scene 框架概述Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)图 3. 用于放置物体的驾驶场景视频示例。每幅图像中的红点是物体插入的位置。

实验结果

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

图 4. 原始天空图像、重建的 HDR 图像及其相关的太阳光照分布图的示例

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

图 5. 原始和重建的 HDR 的环境全景图像示例

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

图 6. 为插入的物体生成阴影的示例

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

图 7. 使用不同风格迁移网络对 PandaSet 数据集的仿真视频帧进行定性比较。

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

图 8. PandaSet 数据集的仿真视频帧在各种渲染条件下的定性比较。

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)

总结:

本文提出了一个创新且可扩展的框架,”Anything in Any Scene",专为逼真的视频仿真而设计。本文提出的框架将各种物体无缝集成到不同的动态视频中,确保保留几何真实感、光照真实感和照片真实感。通过广泛的演示,本文展示了其在缓解视频数据收集和生成相关挑战方面的功效,提供了适用于各种场景的经济高效且省时的解决方案。本文的框架的应用在下游感知任务中显示出显着的改进,特别是在解决目标检测中的长尾分布问题方面。本文框架的灵活性允许直接集成每个模块的改进模型,本文的框架为逼真视频仿真领域的未来探索和创新奠定了坚实的基础。

引用:

Bai C, Shao Z, Zhang G, et al. Anything in Any Scene: Photorealistic Video Object Insertion[J]. arXiv preprint arXiv:2401.17509, 2024.

今天关于《Anything in Any Scene:逼真物体插入(助力各类驾驶数据合成)》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

版本声明
本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
详解Discuz注册流程:快速修改个人资料详解Discuz注册流程:快速修改个人资料
上一篇
详解Discuz注册流程:快速修改个人资料
Go 中的简洁声明
下一篇
Go 中的简洁声明
查看更多
最新文章
查看更多
课程推荐
  • 前端进阶之JavaScript设计模式
    前端进阶之JavaScript设计模式
    设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
    542次学习
  • GO语言核心编程课程
    GO语言核心编程课程
    本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
    508次学习
  • 简单聊聊mysql8与网络通信
    简单聊聊mysql8与网络通信
    如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
    497次学习
  • JavaScript正则表达式基础与实战
    JavaScript正则表达式基础与实战
    在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
    487次学习
  • 从零制作响应式网站—Grid布局
    从零制作响应式网站—Grid布局
    本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
    484次学习
查看更多
AI推荐
  • 毕业宝AIGC检测:AI生成内容检测工具,助力学术诚信
    毕业宝AIGC检测
    毕业宝AIGC检测是“毕业宝”平台的AI生成内容检测工具,专为学术场景设计,帮助用户初步判断文本的原创性和AI参与度。通过与知网、维普数据库联动,提供全面检测结果,适用于学生、研究者、教育工作者及内容创作者。
    23次使用
  • AI Make Song:零门槛AI音乐创作平台,助你轻松制作个性化音乐
    AI Make Song
    AI Make Song是一款革命性的AI音乐生成平台,提供文本和歌词转音乐的双模式输入,支持多语言及商业友好版权体系。无论你是音乐爱好者、内容创作者还是广告从业者,都能在这里实现“用文字创造音乐”的梦想。平台已生成超百万首原创音乐,覆盖全球20个国家,用户满意度高达95%。
    33次使用
  • SongGenerator.io:零门槛AI音乐生成器,快速创作高质量音乐
    SongGenerator
    探索SongGenerator.io,零门槛、全免费的AI音乐生成器。无需注册,通过简单文本输入即可生成多风格音乐,适用于内容创作者、音乐爱好者和教育工作者。日均生成量超10万次,全球50国家用户信赖。
    30次使用
  •  BeArt AI换脸:免费在线工具,轻松实现照片、视频、GIF换脸
    BeArt AI换脸
    探索BeArt AI换脸工具,免费在线使用,无需下载软件,即可对照片、视频和GIF进行高质量换脸。体验快速、流畅、无水印的换脸效果,适用于娱乐创作、影视制作、广告营销等多种场景。
    34次使用
  • SEO标题协启动:AI驱动的智能对话与内容生成平台 - 提升创作效率
    协启动
    SEO摘要协启动(XieQiDong Chatbot)是由深圳协启动传媒有限公司运营的AI智能服务平台,提供多模型支持的对话服务、文档处理和图像生成工具,旨在提升用户内容创作与信息处理效率。平台支持订阅制付费,适合个人及企业用户,满足日常聊天、文案生成、学习辅助等需求。
    36次使用
微信登录更方便
  • 密码登录
  • 注册账号
登录即同意 用户协议隐私政策
返回登录
  • 重置密码